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Este trabajo trata sobre dos ideas básicas en Estad́ıstica y su aplicación a la Teoŕıa del

Muestreo: (i) Desigualdades probabiĺısticas, las cuales proporcionan una cota para la prob-

abilidad de que una variable aleatoria tome valores ‘grandes’ por medio de los momentos

de la variable, y (ii) Normalidad asintótica, una propiedad que desempeña un papel im-

portante en la construcción de intervalos de confianza y en la determinación de tamaños

de muestra. En el Caṕıtulo 1 se presenta una breve descripción del trabajo y la organi-

zación del material subsecuente, mientras que el Caṕıtulo 2 trata sobre las desigualdades

de Markov y Chebishev; en este punto se presenta la principal contribución de este tra-

bajo, a saber, la determinación de condiciones necesarias y suficientes para que las cotas

proporcionadas por esas desigualdades coincida con la probabilidad bajo estudio. Luego,

en el Caṕıtulo 3 se estudian las ideas de convergencia en probabilidad y en distribución,

mientras que en el Caṕıtulo 4 se analiza la noción de normalidad asintótica y su invariancia

bajo la aplicación de transformaciones diferenciables, resultado que se utiliza en el Caṕıtulo

5 para deteminar, bajo el esquema de muestreo aleatorio simple, la distribución ĺımite del

estimador de razón del total poblacional.
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This work is about two basic statistical ideas applied to Sampling Theory: (i) Probability

inequalities, setting a bound on the probability that a random variable attains large values

in terms of the corresponding moments, and (ii) Asymptotic normality, a property that

plays an important role in the construction of confidence intervals and the determination

of sample sizes. In Chapter 2 Markov and Chebishev inequalities are studied, and the

main contribution of this work is presented, namely, necessary and sufficient conditions

are given so that the bounds provided by the aforementioned relations coincide with the

probability under consideration. In Chapter 3 the ideas of convergence in probability,

convergence in distribution as well as the (weak) law of large numbers are discussed. Next,

Chapter 4 concerns with asymptotic normality and the invariance of this property under

differentiable transformations, result that is finally used in Chapter 5 to analyze, under

simple random sampling, the limit distribution of the ratio estimator of the population

total, and to compare it with the classical estimator.
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Chapter 1

Perspective

1.1. Introduction

This work concerns with basic results in Classical Statistics, which are discussed in the context of the

Theory of Sampling. The exposition includes two main topics: (i) Probability inequalities, setting

bounds on the tails of a probability distributions in terms of moments, and (ii) Asymptotic Normality,

a property stating that under mild conditions the distribution of a standardized average can be

approximated by a normal distribution. The main technical contribution of this work concerns the

first point: necessary and sufficient conditions are given so that Markov and Chebishev inequalities

are sharp, that is, the bound for the probability of large values and the probability itself coincide.

Concerning the second point, the basic invariance property is studied, which establishes that if

an asymptotically normal sequence is transformed by a differentiable function, then the modified

sequence is also asymptotically normal. A very important point of the analysis is the formula relating

the new asymptotic variance with the original one. Such a relation will be used to determine the limit

variance of the ratio estimator of the population total, a result that allows to make a comparison

with the classical estimator for the simple random sampling scheme. In the following lines, the origin

of this work is briefly described, and the organization of the subsequent material is outlined.

1.2. The Origin of This Work

This work is a byproduct of the seminar entitled Mathematical Statistics: Elements of Theory

and Examples, relaunched on July 2016 by the Graduate Program in Statistics at the Universidad

Autónoma Agraria Antonio Narro. The basic aims of the project are:
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(i) To be a framework were statistical problems can be freely and fruitfully discussed;

(ii) To promote the understanding of basic statistical and analytical tools through the analysis and

detailed solution of exercises.

(iii) To develop the writing skills of the participants, generating an organized set of neatly solved

examples, which can used by other members of the program, as well as by the statistical communities

in other institutions and countries.

(iv) To develop the communication skills of the students and faculty through the regular participation

in seminars, were the results of their activities are discussed with the members of the program.

The activities of the seminar are concerned with fundamental statistical theory at an intermediate

(non-measure theoretical) level, as in the book Mathematical Statistics by Dudewicz and Mishra

(1998). When necessary, other more advanced references that have been useful are Lehmann and

Casella (1998), Borobkov (1999) and Shao (2002), whereas deeper probabilistic aspects have been

studied in the classical text by Loève (1984). On the other hand, statistical analysis requires alge-

braic and analytical tools, and the basic references on these disciplines are Apostol (1980), Fulks

(1980), Khuri (2002) and Royden (2003), which concern mathematical analysis, whereas the alge-

braic aspects are covered in Graybill (2000, 2001) and Harville (2008). Initially, the project was

concerned with the theory of Point Estimation and Hypothesis Testing. During the last two years

the seminar has been focused on Sampling Theory at the level of Lohr (2000), Tucker (1992), Hansen

et al. (2002), and Sarndal et al. (1992).

1.3. The Organization

The remainder of this work has been organized as follows: Chapter 2 is concerned with Markov

and Chebishev inequalities, relations that set bounds on the tails of a probability distribution via

the moments of positive order. Those results are valid under minimal conditions and, practically,

are universally valid. However, such a generality naturally implies that the bounds provided by the

aforementioned relations are not sharp, that is, generally the bounds are ‘far from’ the true value.

The main contribution of this work consists in presenting a detailed analysis on the necessary and

sufficient conditions so that the bounds provided by Markov and Chebishev inequalities coincide

with the probability under consideration.

In Chapter 3 two ideas of convergence of random variables are discussed, and the relation between

these two concepts is studied. The presentation includes the notion of convergence in probability

and the concept of convergence in the mean, and the relation between them is analyzed . Also,
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the (weak) law of large numbers is stated , and the discussion is applied to to a basic problem

in problem in survey sampling, namely determining the sample size required to achieve certain

precision/confidence combination.

In Chapter 4 , the idea of asymptotic normality is studied, and it is shown that the Central Limit

Theorem allows to determine sample sizes which, in spite of being substantially smaller than those

obtained via Chebishev inequality, are sufficient to ensure that desired precision with a given con-

fidence level. It is shown that asymptotic normality is preserved under the application of smooth

(differentiable) functions.

Finally, the exposition concludes in Chapter 5 where, using the the results previously analyzed, the

usual estimator of the population total under simple random sampling is compared with the ratio

estimator.
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Chapter 2

Probability Inequalities

2.1. Introduction

%vskip -.25in This chapter is concerned with two results about the the tails of a probability distribu-

tion, namely, Markov and Chebishev inequalities. The first relation concerns a nonnegative random

variable, and sets an upper bound the probability of attaining large values in terms of moments of

positive order, whereas the second inequality uses the variance to provide an upper bound for the

probability of large deviations of a random variable about its mean. As it will be discussed below,

these results are valid under minimal conditions and, practically, are universally valid. However,

such a generality naturally implies that the bounds provided by the aforementioned relations are

not sharp, that is, generally they are ‘far from’ the true value. In this chapter the problem of deter-

mining necessary and sufficient conditions so that the bounds provided by Markov and Chebishev

inequalities coincide with the probability under consideration. The subsequent material has been

organized as follows: In Section 2 Markov and Chebishev inequalities are established, whereas in

Section 3 examples are used to show that, in general, the strict inequality holds in Markov and

Chebishev relations,; however, an example is given to show that the bound in those relations can

be attained in some cases. Next, in Section 4. necessary and sufficient conditions are determined so

that the bound in Markov inequality coincides with the probability under consideration, whereas a

similar result is obtained in Section 5 for Chebishev inequality.

2.2. Chebishev and Markov Inequalities

This section concerns with inequalities involving probability distributions. Using moments of a

random variable X, the relations stated in the following theorem provide bounds for the probability
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of the event that X attains ‘large values’.

Theorem 2.2.1. (i) If X is a nonnegative random variable, then for every a, t ∈ (0,∞)

P [X ≥ t] ≤ E[Xa]

ta
; (2.2.1)

this is Markov inequality.

(ii) If Y is a random variable with finite mean µY = E[Y ] and standard deviation σY , then

P [|Y − µY | ≥ kσY ] ≤ 1

k2
, k > 0; (2.2.2)

this relation is known as Chebishev inequality.

Proof. (i) Keeping in mind that the inequality X ≥ 0 always holds, observe that Xa ≥ ta if X ≥ t,

and Xa ≥ 0 if X < t. Using the notation of indicator functions, these relations can be expressed as

Xa ≥ taI[X ≥ t] + 0I[X < ta] = taI[X ≥ t].

Via the monotonicity of the expectation operator this relation leads to

E[Xa] ≥ taE[I[X ≥ t]] = taP [X ≥ t],

and (2.2.1) follows.

(ii) Set X = |Y − µY |, t = kσY and a = 2. Applying part (i) with his data, it follows that

P [|Y − µY | ≥ kσY ] ≤ E[|Y − µY |2]

(kσY )2

=
E[(Y − µY )2]

k2σ2
Y

=
σ2
Y

k2σ2
Y

=
1

k2
,

completing the argument. tu

Slightly different formulation of the inequalities in the above theorem are discussed below.

Remark 2.2.1. Alternative forms of Markov and Chebishev inequalities.

(i) Using the basic property P [Ac] = 1− P [A] for any event A, note that the inequality P [A] ≤ b is

equivalent to P [Ac] ≥ 1− b, so that (2.2.1) and (2.2.2) can be equivalently written as

P [X < t] ≥ 1− E[Xa]

ta
, (2.2.3)
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and

P [|Y − µY | < kσY ] ≥ 1− 1

k2
, k > 0, (2.2.4)

relations that are alternative forms of Markov and Chebishev inequalities, respectively.

(ii) Given t > 0, consider a sequence {tn} ⊂ (0,∞) such that tn ↘ t, that is, tn ≥ tn+1 for every n

and limn→∞ tn = t. In this case, using that a distribution function is continuous form the right, it

follows that

lim
n→∞

P [X < tn] = P [X ≤ t];

see, for instance, Dudewicz and Mishra (1988). Applying (2.2.3) with tn instead of t it follows that

lim
n→∞

P [X < tn] ≥ lim
n→∞

(
1− E[Xa]

tan

)
= 1− lim

n→∞

E[Xa]

tan

= 1− E[Xa]

ta
.

Combining these two last displays it follows that

P [X ≤ t] ≥ 1− E[Xa]

ta
, t > 0. (2.2.5)

Similarly, starting form (2.2.4), it follows that

P [|Y − µY | ≤ kσY ] ≥ 1− 1

k2
, k > 0. (2.2.6)

Again, these relations are alternative forms of Markov and Chebichev inequalities.

(iii) If Y is a random variable with finite mean µY and standard deviation σY , then the corresponding

standardized random variable Y ∗ is given by

Y ∗ =
Y − µY
σY

. (2.2.7)

Observing that, for every k > 0,

|Y ∗| ≥ k ⇐⇒ |Y − µY | ≥ kσY and |Y ∗| ≤ k ⇐⇒ |Y − µY | ≤ kσY

form (2.2.2) and (2.2.6) it follows that

P [|Y ∗| ≥ k] ≤ 1

k2
and P [|Y ∗| ≤ k] ≥ 1− 1

k2
; (2.2.8)

Observe that for k ≤ 1 these inequalities convey no information.

(iv) Chebishev inequality can be expressed verbally as follows:
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The probability that the random variable Y deviates from its mean by k standard deviations or

more is less that 1/k2.

For instance, P [|Y −µY | ≥ 4σY ] ≤ 1/42 = 1/16 = .0625 and P [|Y −µY | ≥ 5σY ] ≤ 1/52 = 1/25 = .04

. tu

The importance of Theorem 2.2.1 stems form its generality: Chebishev and Markov inequalities are

always valid for any random variable with finite moments of the appropriate order.

2.3. Two Examples

The generality behind the conclusions of Theorem 2.2.1 has a price, namely, the bounds in Markov

and Chebishev inequalities are not sharp, that is, usually in (2.2.1) and (2.2.2) the inequality is

strict. In this section an example will be used to illustrate this phenomenon, and an additional

example will be used to show that, eventually, it is possible to observe that the equality occurs. To

continue note that, regardless of the distribution of X, Chebishev inequality (2.2.2) with k = 2 and

k = 3 yields that

P [|X − µX | ≥ 2σX ] ≤ 1

22
=

1

4
and P [|X − µX | ≥ 3σX ] ≤ 1

32
=

1

9
. (2.3.1)

Example 2.3.1. For k = 2, 3, the probability P [ |X−µX | ≥ kσX ] will be computed for several known

distributions, and it will be verified that the strict inequalities occur in the above display.

(a) If X ∼ N (0, 1) then µX = 0 and σX = 1, so that

P [|X − µX | ≥ 2σX ] = 0.04550026 <
1

4
and P [|X − µX | ≥ 3σX ] = 0.002699796 <

1

9
.

(b) If X ∼ P(4) (Poisson distribution with mean 4), then µX = λ = 4 and σ2
X = λ = 4, so that

σX = 2 and then

P [|X − µX | ≥ 2σX ] = P [|X − 4| ≥ 2(2)]

= P [|X − 4| ≥ 4]

= [PX ≥ 8] + P [X = 0]

= 0.05113362 + 0.01831564 = 0.06944925 <
1

4
,

whereas
P [|X − µX | ≥ 3σX ] = P [|X − 4| ≥ 3(2)]

= P [|X − 4| ≥ 6]

= [PX ≥ 10] = 0.002839766 <
1

9
.



8

(c) If X ∼ B(10, 0.4) (Binomial distribution with n = 10 repetitions and success probability p = 0.4),

then µX = 10(0.4) = 4 and σ2
X = 10(0.4)(0.6) = 2.4, so that σX = 1.549193 and then

P [|X − µX | ≥ 2σX ] = P [|X − 4| ≥ 2(1.549193)]

= P [|X − 4| ≥ 3.098387]

= [PX ≥ 8] + P [X = 0]

= 0.01229455 + 0.006046618 = 0.01834117 <
1

4
;

also
P [|X − µX | ≥ 3σX ] = P [|X − 4| ≥ 3(1.549193)]

= P [|X − 4| ≥ 4.64758]

= P [X ≥ 9] = 0.001677722 <
1

9
.

In all of the above cases the strict inequalities hold in (2.2.2), showing explicitly that, generally,

P [|X − µX | ≥ kσX ] is strictly less than 1/k2. tu

In contrast with the previous example, the following one shows that the equality may hold in

Chebishev inequality, that is, P [ |X −µX | ≥ kσX ] may be equal to the upper bound 1/k2 in (2.2.2).

Example 2.3.2. Let the distribution of the random variable X be determined by

fX(x) =

 1/8 if x = −1,
6/8 if x = 0,
1/8 if x = 1.

In this context, it will be shown that Chevishev inequality becomes an equality when k = 2. To

achieve this goal, note that

µX = E[X] = −1
1

8
+ 0

6

8
+ 1

1

8
= 0,

whereas

E[X2] = (−1)2
1

8
+ 02

6

8
+ (1)2

1

8
=

2

8
=

1

4
,

and then

σ2
X = E[X2]− (E[X])2 =

1

4
, σX =

1

2
.

Therefore, Chebishev inequality with k = 2 yields that

P [|X| ≥ 1] = P

[
|X − 0| ≥ 2

(
1

2

)]
= P [|X − µX | ≥ kσX ] ≤ 1

k2
=

1

4
,

since

P [|X| ≥ 1] = P [X = 1] + P [X = −1] = 1/8 + 1/8 = 1/4,

it follows that equality holds in Chebishev inequality with k = 2. tu
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2.4. Conditions for Equality: I

The examples en the previous section naturally leads to the following question: When does the

equality occur in Chebishev inequality? In this section necessary and sufficient conditions on the

distribution of a random variable X are stated so that equality holds in the basic relations (2.2.1)

and (2.2.2). The analysis starts with Markov inequality.

Theorem 2.4.1. Let X be a random variable such that E[ |X|a] <∞ where a > 0. Given t > 0, the

following conditions (i) and (ii) are equivalent:

(i) P [|X| ≥ t] =
E[|X|a]

ta

(ii) With probability 1, |X| attains just the values 0 and t , that is, P [|X| = t] + P [X = 0] = 1.

The proof of this theorem is based on the following auxiliary result.

Lemma 2.4.1. For a given random variable X

X ≥ 0 and E[X] = 0⇒ P [X = 0] = 1.

Proof. Suppose that X ≥ 0 and E[X] = 0. In this case X = |X|, since X ≥ 0, and given n > 0,

Markov inequality yields that

P [X ≥ 1/n] ≤ E[X]

1/n
=

0

1/n
= 0.

Thus, from [X > 0] =
⋃∞
n=1[X ≥ 1/n] it follows that

P [X > 0] =

∞∑
n=1

P [X ≥ 1/n] =

∞∑
n=1

0 = 0,

so that P [X ≤ 0] = 1 and then, recalling that X ≥ 0, it follows that P [X = 0] = 1. tu

Proof of Theorem 2.4.1. (i) ⇒ (ii): Suppose that

P [|X| ≥ t] =
E[|X|a]

ta
, (2.4.1)

where a and t are positive real numbers. Note that

|X|a = |X|aI[|X| ≥ t] + |X|aI[t > |X|] ≥ |X|aI[|X| ≥ t] ≥ taI[|X| ≥ t].
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Using that the expectation operator is monotone, it follows that

E[X|a] = E[|X|aI[|X| ≥ t]] + E[|X|aI[t > |X]]

≥ E[|X|aI[|X| ≥ t]]

≥ taE[I[|X| ≥ t]]

= taP [|X| ≥ t]

where the relation E[I[|X| ≥ t]] = P [|X| ≥ t] was used to set the last equality. Since E[|X|a] =

taP [|X ≥ t], by (2.4.1), the extreme terms in the the above display are equal, and then all of the

terms coincide with taP [|X| ≥ t]. Hence,

taP [|X| ≥ t] = E[X|a]

= E[|X|aI[|X| ≥ t]] + E[|X|aI[t > |X]]

= E[|X|aI[|X| ≥ t]]

= taE[I[|X| ≥ t]]

= taP [|X| ≥ t].

(2.4.2)

The third equality in this display, which is given by

E[|X|aI[|X| ≥ t]] + E[|X|aI[t > |X]] = E[|X|aI[|X| ≥ t]],

is equivalent to E[|X|aI[t > |X]] = 0. From this point, applying Lemma 2.4.1 with |X|aI[t > |X|]

instead of X, it follows that

P [|X|aI[t > |X|] = 0] = 1. (2.4.3)

Observe now that |X|aI[t > |X|] = 0 is equivalent to |X| = 0 or I[t > |X|] = 0, and that

I[t > |X|] = 0 means that the relation t > |X| does not occur, and in that case t ≤ |X| holds.

Therefore,

|X|aI[t > |X|] = 0 ⇐⇒ |X| = 0 or t ≤ |X|,

so that

[|X|aI[t > |X|] = 0] = [|X| = 0] ∪ [t ≤ |X|]. (2.4.4)

To continue, note that (2.4.3) implies that P [A] = P [A ∩ [|X|aI[t > |X|] = 0]] for every event A;

applying this equality with the event A = [t > |X|], via the previous display it follows that

P [t > |X|] = P [[t > |X|] ∩ [|X|aI[t > |X|] = 0]]

= P [[t > |X|] ∩ {|X| = 0] ∪ [t ≤ |X|]}]

= P [{[t > |X|] ∩ |X| = 0]} ∪ {[t > |X|] ∩ [t ≤ |X|]}];

Since [t > |X|] ∩ [t ≤ |X|] = ∅ and [t > |X|] ∩ [|X| = 0] = [|X| = 0], the above display leads to

P [t > |X|] = P [|X| = 0]. (2.4.5)
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Next, the fourth equality in (2.4.2) states that E[|X|aI[|X| ≥ t]] = taE[I[|X| ≥ t]], so that

E[(|X|a − ta)I[|X| ≥ t]] = 0.

Since the random variable (|X|a − ta)I[|X| ≥ t] is nonnegative, from Lemma 2.4.1 it follows that

P [(|X|a − ta)I[|X| ≥ t] = 0] = 1. (2.4.6)

Now, observe that (|X|a − ta)I[|X| ≥ t] = 0 is equivalent to

(|X|a − ta) = 0 or I[|X| ≥ t] = 0;

since (|X|a − ta) = 0 is equivalent to |X| = t and I[|X| ≥ t] = 0 means that the event [|X| < t]

occurs, it follows that

[|X| = t] ∪ [|X| < t] = [(|X|a − ta)I[|X| ≥ t] = 0].

On the other hand, note that (2.4.6) implies that P [A] = P [A∩ [(|X|a− ta)I[|X| ≥ t] = 0]] for every

event A. Using this equality with the event [|X| ≥ t] instead of A, via the above display it follows

that
P |X| ≥ t] = P [[|X| ≥ t] ∩ [(|X|a − ta)I[|X| ≥ t] = 0]]

= P [[|X| ≥ t] ∩ {[|X| = t] ∪ [|X| < t]}]

= P [{[|X| ≥ t] ∩ [|X| = t]} ∪ {[|X| ≥ t] ∩ [|X| < t]}];

hence, observing that [|X| ≥ t] ∩ [|X| = t] = [|X| = t] and [|X| ≥ t] ∩ [|X| < t] = ∅, it follows that

P |X| ≥ t] = P [|X| = t].

Combining this equality with (2.4.5) it follows that

P [|X| = t] + P [|X| = 0] = P [|X| ≥ t] + P [t > |X|] = 1,

which is property (ii).

(ii)⇒ (i): Suppose that P [|X| = t] + P [X = 0] = 1. In this case P [|X| ≥ t] = P [|X| = t] and

E[|X|a] = 0aP [|X| = 0] + taP [|X| = t] = taP [|X| = t] = taP [|X| ≥ t],

and then P [|X| = t] =
E[|X|a]

ta
. tu

Remark 2.4.1. Theorem 2.4.1 states that the equality occurs in Markov inequality just in the very

special case that the distribution of |X| is concentrated on two points, namely 0 and t > 0. For



12

instance, suppose that X ∼ Bernoulli (p), so that P [X = 1] = p = 1 − P [X = 0]. In this case, the

distribution of |X| is concentrated on 0 and 1, and then , P [|X| ≥ 1] = E[|X|a]/1a = E[|X|a] holds

for every a > 0, but P [|X| ≥ t] < E[|X|a]/ta for every t 6= 1 and a > 0. Next, define Y = X + 1

so that the distribution of Y is concentrated on the points 1 and 2. In this case, it follows form

Theorem 2.4.1 that P [Y ≥ t] < E[|Y |a]/ta for every t, a > 0, that is, the strict inequality occurs in

(2.4.1); the reason is that Y is concentrated on two points which are nonull. tu

2.5. Conditions for Equality: II

In this section Theorem 2.4.1 will be used to determine necessary and sufficient conditions so that

equality holds in Chebishev inequality.

Theorem 2.5.1. Let X be a random variable with finite mean and variance µX and σ2
X > 0,

respectively. For a positive real number k, the following conditions (i) and (ii) are equivalent.

(i) The equality P [|X − µX | ≥ kσX ] =
1

k2
holds for some k ≥ 1;

(ii) There exist a, b ∈ IR such that a < b and

P |X = a] = P [X = b] = p > 0 and P

[
X =

a+ b

2

]
= 1− 2p; (2.5.1)

(iii) For exactly one k > 0, the equality P [|X − µX | ≥ kσX ] =
1

k2
holds.

Proof. Let X∗ be the standardized version of X, that is,

X∗ =
X − µX
σX

(2.5.2)

so that

E[|X∗|2] = E

[(
X − µX
σX

)2
]

= 1,

and

|X − µX | ≥ kσX ⇐⇒ |X∗| ≥ k.

(i) ⇒ (ii): Suppose that P [|X − µX | ≥ kσX ] = 1/k2 and note that the two previous displays yield

that

P [|X∗| ≥ k] = 1/k2 = E[|X∗|2]/k2.

From this point, an application of Theorem 2.4.1 yields that the distribution of |X∗| is supported

on the values 0 and k, that is,

1 = P [X∗ = 0] + P [|X∗| = k].
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Via (2.5.2) it follows that X∗ = 0 if and only if X = µX whereas |X∗| = k is equivalent to

|X −µX | = kσX , that is, X = µX + kσX or X = µX − kσX . Combining these relations with (2.5.2)

it follows that that

1 = P [X − µX = 0] + P [|X − µX | = kσX ]

= P [X = µX ] + P [X = µX + kσX ] + P [X = µX − kσX ]
(2.5.3)

Setting

a = µX − kσX and b = µX + kσX , so that µX =
a+ b

2
,

(2.5.3) leads to

1 = P [X = a] + P [X = b] + P [X = (a+ b)/2]. (2.5.4)

Observe now that

a+ b

2
= µX

= E[X]

= aP [X = a] + bP [X = b] + (1− P [X = a]− P [x = b])
a+ b

2

=
a− b

2
P [X = a] +

b− a
2

P [X = b] +
a+ b

2
.

It follows that 0 =
a− b

2
P [X = a] +

b− a
2

P [X = b], that is, (b − a)P [X = a] = (b − a)P [X = b];

since b > a this last relation leads to

P [X = a] = P [X = b] =: p,

and then (2.5.4) immediately implies that P [X = (a + b)/2] = 1 − 2p; observing that p > 0, since

otherwise P [X = (a+ b)/2] = 1 and then σX = 0, assertion (ii) follows.

(ii) ⇒ (iii): Suppose that (2.5.1) holds and note that

µX = E[X] = P [X = a]a+ P [X = b]b+ P [X = (a+ b)/2](a+ b)/2

= pa+ pb+ (1− 2p)(a+ b)/2

= (a+ b)/2

and

σ2
X = E[(X − µX)2]

= P [X = a](a− µX)2 + P [X = b])(b− µX)2 + P [X = (a+ b)/2](µX − (a+ b)/2)2

= p(a− (a+ b)/2)2 + p(b− (a+ b)/2)2

= p(b− a)2/2;

hence

σX =

√
p

2
(b− a).
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Now set

k =

√
1

2p
, so that kσX =

√
1

2p

√
p

2
(b− a) =

b− a
2

.

Since the distribution of X is concentrated on {a, b, (a+b)/2 = µX}, it follows that, with probability

1,

[|X − µX | ≥ kσX = (b− a)/2] = [X = a] ∪ [X = b],

whereas

[|X − µX | ≥ k̃σX ] =

{
[X = a] ∪ [X = b], if k̃ ≤ k,
∅, if k̃ > k.

Hence,

P [|X − µX | ≥ kσX ] = P [X = a] + P [X = b] = 2p =
1

k2
,

and

P [|X − µX | ≥ k̃σX ] =


P [X = a] + P [X = b] = 2p =

1

k2
<

1

k̃2
, if k̃ < k,

0 <
1

k̃2
, if k̃ > k.

These two last displays show that the equality P [|X − µX | ≥ tσX ] = 1/t2 occurs just for the single

value t = k, establishing (iii).

(iii)⇒ (i): This part is clear. tu

Remark 2.5.1. Note that the conclusion of Theorem 2.5.1 can be summarized as follows: Equality

in (2.2.2) occurs just when the following two conditions are satisfied:

(i) The distribution of X must be concentrated on three points, a, b and the midpoint (a+ b)/2.

(ii) Points a and b are attained with the same probability, say p.

Under these conditions equality occurs in (2.2.2) only if k = 1/
√

2p. tu

Example 2.5.1. (a) In the three cases considered in Example 2.3.1, the distribution of X is not

concentrated on a set of three elements, so that the strict inequality must always occur in (2.2.2), a

fact that was confirmed by direct calculations.

(b) Consider a random variable X ∼ Bernoulli (p). In this case, the distribution of X is supported

on the three points a = 0, b = 1 and 1/2 = (a + b)/2, so that requirement (i) in Remark 2.5.1 is

satisfied; in fact, the distribution is supported on the two points 0 and 1, but 1/2 can be safely

included in the support set. If p 6= 1/2, then P [X = 1] = p 6= P [X = 0] = 1 − p, and then

requirement (ii) in the above Remark is not fulfilled, so that P [|X − µX | ≥ kσX ] < 1/k2 for every
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k > 0. On the other hand, when p = 1/2, then P [X = 1] = P [X = 0] = 1/2 = p and requirement

(ii) in Remark 2.5.1 is satisfied, so that P [|X − µX | ≥ kσX ] = 1/k2 occurs when k = 1/
√

2p = 1,

whereas P [|X − µX | ≥ kσX ] < 1/k2 for every positive k 6= 1. tu
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Chapter 3

Convergence of Random Variables

3.1. Introduction

In this chapter two ideas of convergence of random variables are discussed, and the relation between

these two concepts is studied. The presentation starts introducing the notion of convergence in

probability in Section 2, which is illustrated via a detailed example. Next, in Section 3 the notion of

convergence in the mean is formulated, and it is shown that this idea is stronger than convergence in

probability, that is, it is proved that, if {Xn} converges in the mean to the random variable X, then

{Xn} also converges to X in probability. However, an example is used to show that the converse of

this result is not true, so that the ideas of convergence in probability and convergence in the mean

are not equivalent notions. The presentation continues in Section 4 with the (weak) law of large

numbers, which can be described as follows: Given a sequence of X1, X2, X3, . . . of independent and

identically distributed random variables with finite mean and variance, then the average Yn of the

first n observations X1, X2, . . . , Xn converges in probability to the population mean. Finally, the

exposition concludes in Section 5 with a discussion about an important problem in survey sampling,

namely determining the sample size required to achieve certain precision/confidence combination.

All of the results presented below are applications of Markov and Chebichev inequalities studied in

Chapter 2.

3.2. Convergence in Probability

In this section the notion of convergence in probability for random variables is formulated. Intu-

itively, given a random variable X, a sequence {Xn} of random variables converges to X if the
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difference between Xn and X becomes arbitrarily small with high probability whenever n is large

enough.

Definition 3.2.1. Let X and Xn, n = 1, 2, 3, . . ., be random variables defined on the same probability

space. The sequence {Xn} converges in probability to X if

lim
n→∞

P [|Xn −X| > ε] = 0 for every ε > 0. (3.2.1)

The notation

Xn
P−→X (3.2.2)

will be used to indicate that {Xn} converges in probability to X.

Note that in the above definition it is sufficient to require that (3.2.1) occurs for each ε small enough,

say ε ∈ (0, 1) or, more generally, ε ∈ (0, δ) where δ > 0 is arbitrary. As already noted, (3.2.1) states

that, with a probability as near to 1 as desired, the difference between Xn and X will be less than

any positive amount ε prescribed beforehand if n is large enough.

Example 3.2.1. (i) Let X be a random variable, and for each n define Xn as follows:

Xn =

{
X, if X ≤ n
0, if X > n

Thus, |X −Xn| = 0 when X < n, so that, for every ε > 0,

[|X −Xn| > ε] ⊂ [X > n]

and then P [|X −Xn| > ε] ≤ P [X > n] = 1− FX(n)→ 0 as n→∞, and it follows that Xn
P−→X.

(ii) Let X1, X2, X3, . . . be independent and identically distributed random variables with distribution

U(0, 1) (the uniform distribution (0,1)). Set

Yn = max{X1, X2, . . . , Xn}

It will be shown that {Yn} converges in probability to the constant random variable equal to 1:

Yn
P−→ 1. (3.2.3)

To achieve this goal observe that, with probability 1, the values of Yn belong to (0, 1) and then, for

every ε ∈ (0, 1),

[|Yn − 1| > ε] = [Yn ≤ 1− ε] = [Xi ≤ 1− ε, i = 1, 2, . . . , n],
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so that
P [|Yn − 1| > ε] = P [Xi ≤ 1− ε, i = 1, 2, . . . , n]

= P [X1 ≤ 1− ε]P [X2 ≤ 1− ε] · · ·P [Xn ≤ 1− ε]

= (1− ε)(1− ε) · · · (1− ε)

= (1− ε)n

and it follows that P [|Yn − 1| > ε]→ 0 as n→∞, establishing (3.2.3).

(iii) Let X1, X2, X3, . . . be a sequence of independent and identically distributed random variables

with mean µ and variance σ2. It will be proved that

Yn: =
2

n(n+ 1)

n∑
i=1

iXi
P−→µ.

To achieve this goal observe that

E[Yn] =
2

n(n+ 1)

n∑
i=1

iE[Xi] =
2

n(n+ 1)

n∑
i=1

iµ

= µ
2

n(n+ 1)

n∑
i=1

i = µ
2

n(n+ 1)

n(n+ 1)

2
= µ

whereas

E[[(Yn − µ)2] = Var [Yn] = Var

[
2

n(n+ 1)

n∑
i=1

iXi

]

=

(
2

n(n+ 1)

)2 n∑
i=1

Var [iXi] =
4

n2(n+ 1)2

n∑
i=1

i2Var [Xi]

=
4

n2(n+ 1)2

n∑
i=1

i2σ2 = σ2 4

n2(n+ 1)2
n(n+ 1)(2n+ 1)

6
= σ2 4n+ 2

3n(n+ 1)

and it follows that

lim
n→∞

E[(Yn − µ)2] = 0.

Therefore, an application of Markov inequality yields that, for every ε > 0,

P [|Yn − µ| > ε] ≤ E[(Yn − µ)2]

ε2
→ 0 as n→∞,

and then Yn
P−→µ. tu

3.3. Convergence in the Mean

In this section Markov inequality will be used to provide a sufficient criterion for convergence in

probability. The proof of the following result extends the argument used to analyze Example 3.2.1(iii)

in the previous section.
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Lemma 3.3.1. Let X and Xn, n = 1, 2, 3, . . ., be random variables defined on the same probability

space, and suppose that, for some a > 0,

E[|Xn −X|a]→ 0 as n→∞. (3.3.1)

In this case,

Xn
P−→X.

Proof. Given ε > 0 observe that Markov inequality yields that

P [|Xn −X| > ε] ≤ E[|Xn −X|a]

εa
→ 0 as n→∞,

so that Xn
P−→X. tu

When (3.3.1) holds, the sequence {Xn} converges to X in the mean of order a. Thus, the main

conclusion of the lemma states that

‘if {Xn} converges to X in the mean of order a > 0,

then {Xn} converges to X in probability’.
(3.3.2)

The most frequent application of the above lemmas occurs when X is a constant .

Example 3.3.1. Let X1, X2, X3, . . . be a sequence of independent and identically distributed random

variables with mean µ and variance σ2. In this context, it will be verified that

Yn: =
6

n(n+ 1)(2n+ 1)

n∑
i=1

i2Xi
P−→µ.

To establish this conclusion observe that

E[Yn] =
6

n(n+ 1)(2n+ 1)

n∑
i=1

i2E[Xi] =
6

n(n+ 1)(2n+ 1)

n∑
i=1

i2µ

= µ
6

n(n+ 1)(2n+ 1)

n∑
i=1

i2 = µ
6

n(n+ 1)(2n+ 1)

n(n+ 1)(2n+ 1)

6
= µ.

Next, it will be shown that {Yn} converges to µ in the mean of order 2, that is,

E[/Yn − µ)2]→ 0 as n→∞.

To achieve this goal, note that

E[[(Yn − µ)2] = Var [Yn] = Var

[
6

n(n+ 1)(2n+ 1)

n∑
i=1

i2Xi

]

=

(
6

n(n+ 1)(2n+ 1)

)2 n∑
i=1

Var
[
i2Xi

]
= σ2

(
6

n(n+ 1)(2n+ 1)

)2 n∑
i=1

i4

(3.3.3)
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To continue, a bound for
∑n
i=1 i

4 will be obtained using the integral
∫ 1

0
x4 dx. Note that

1

5
=

∫ 1

0

x4 dx

=

n∑
k=1

∫ k/n

(k−1)/n
x4 dx

≥
n∑
k=1

∫ k/n

(k−1)/n

(
k − 1

n

)4

dx

≥
n∑
k=1

1

n

(
k − 1

n

)4

=
1

n5

n∑
k=1

(k − 1)
4

=
1

n5

n−1∑
i=1

i4

Hence,

n−1∑
i=1

i4 ≤ n5

5
and then

n∑
i=1

i4 =

n−1∑
i=1

i4 + n4 ≤ n5

5
+ n4 ≤ 6n5

5
.

Combining this relation with the inequality n(n+ 1)(2n+ 1) ≥ n3, it follows that(
6

n(n+ 1)(2n+ 1)

)2 n∑
i=1

i4 ≤
(

6

n3

)2
6

5
n5 =

216

5n

and, via (3.3.3) it follows that E[(Yn − µ)2] ≤ 216/(5n) → 0. Therefore, an application of Lemma

3.3.1 with µ and the sequence {Yn} instead of X and {Xn}, respectively, and a = 2 yields that

Yn
P−→µ. tu

After a glance at (3.3.2), the following question naturally arises:

Is it true that if {Xn} converges in probability to X, then

{Xn} converges to X in the mean of some order a > 0?

It will be shown in the example below that the answer to this question is negative.

Example 3.3.2. (i) Consider the following function

f(x) =
θ − 1

x log(x)θ
, x ≥ e, f(x) = 0 x < e,

where θ > 1.

(i) It will be verified that f(x) is a density function. To this end, observe that f(x) ≥ 0 for every

x ∈ IR, and ∫
IR

f(x) dx =

∫ ∞
e

f(x) dx =

∫ ∞
e

θ − 1

x log(x)θ
dx. (3.3.4)
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To compute the right-hand side, observe that , for x > e,

d

dx

[
− log(x)1−θ

]
= −(1− θ) log(x)−θ

d

dx
log(x)

= (θ − 1)
1

log(x)θ
1

x

=
θ − 1

x log(x)θ
= f(x)

Thus, − log(x)1−θ = − log(x)1−θ is an antiderivative of f(x) on the interval [e,∞), and then (3.3.4)

yields that ∫
IR

f(x) dx =

∫ ∞
e

f(x) dx

= − log(x)1−θ
∣∣∞
x=e

= lim
b→∞

[
− log(b)1−θ − (− log(e)1−θ

]
= lim
b→∞

[
− log(b)1−θ + 1

]
;

on the other hand, since log(b)→∞ as b→∞, and 1− θ < 0, it follows that limb→∞ log(b)1−θ = 0,

and then the above display yields that
∫
IR
f(x) dx = 1. Hence, f(·) is a density function.

(ii) Let X be a random variable with density f(x), and set

Xn =

{
X, if X ≤ n
0, if X > n

.

Show that

Xn
P−→X but E[|Xn −X|a] 6→ 0 as n→∞. (3.3.5)

To achieve this goal, let ε > 0 and observe that |Xn −X| > ε ⇐⇒ X > n, so that

P [|Xn −X| > ε] = P [X > n] = 1− P [X ≤ n]→ 0 as n→∞,

and then

Xn
P−→X. (3.3.6)

On the other hand, for each a > 0

|Xn −X|a =

{
Xa, if X > n
0, if X ≤ n,

so that

E[|Xn −X|a] =

∫ ∞
n

xaf(x) dx

=

∫ ∞
n

xa
θ − 1

x log(x)θ
dx

=

∫ ∞
n

1

x1−a log(x)θ
dx

(3.3.7)
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To continue, recall that log(x) increases more slowly than any positive power of x, that is,
log(x)

xb
→

0 as x→∞ for each b > 0, and then

log(x)θ

xa
=

(
log(x)

xa/θ

)θ
→ 0 as x→∞.

Therefore, there exists N such that

n > N ⇒ log(x)θ

xa
< 1⇒ log(x)θ < xa

⇒ x1−a log(x)θ < x1−axa

⇒ x1−a log(x)θ < x.

Combining this relation with (3.3.7), it follows that
1

x1−a log(x)θ
>

1

x
when n > N , so that

n > N ⇒ E[|Xn −X|a] =

∫ ∞
n

1

x1−a log(x)θ
dx ≥

∫ ∞
n

1

x
dx =∞,

and (3.3.5) follows combining this display with (3.3.6). tu

3.4. Weak Law of Large Numbers

The most important application of the idea of convergence in probability occurs when Xn is the

average of a sample from a given population, and X is a constant random variable equal to the

population mean. The following result, which is known as the weak law of large numbers, states

that if the sample size n is large enough, then for each ε > 0 the probability of observing that the

sample mean Xn differs from the sample population µ by more than ε is negligible, that is, goes to

zero as n increases.

Theorem 3.4.1. Let X1, X2, X3, . . . be independent and identically distributed random variables,

and suppose that their common distribution has finite mean µ and variance σ2 ∈ (0,∞). Define the

sample mean of the first n observations by

Xn: =
X1 +X2 + · · ·+Xn

n
.

In this case

P [ |Xn − µ| > ε] ≤ σ2

nε2
, (3.4.1)

and then

Xn
P−→µ (3.4.2)
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Proof. Observe that

Var
[
Xn

]
= E[(Xn − µ)2] =

σ2

n
.

From this point, Chebishev inequality with k = ε/
√

Var
[
Xn

]
= ε
√
n/σ yields that

P [|Xn − µ| ≥ ε] = P [|Xn − µ| ≥ kσXn
] ≤ 1

k2
=

Var
[
Xn

]
ε2

=
σ2

ε2n
,

establishing (3.4.1); since
σ2

ε2n
→ 0, this last display yields that P [|Xn − µ| ≥ ε] → 0, so that

Xn
P−→ 0. tu

Example 3.4.1. (i) Suppose that X1, X2, . . . are independent and identically distributed random

variables with P(λ) distribution. In this case the population mean and variance are given by is

µ = λ and σ2 = λ. Thus, Xn
P−→λ.

(ii) Suppose that X1, X2, . . . are independent and identically distributed random variables with E(λ)

distribution (exponential distribution with density λe−λx for x > 0.) . In this case the population

mean and variance are given by is µ = 1/λ and σ2 = 1/λ, so that Xn
P−→λ.

(iii) Let X1, X2, . . . be independent and identically distributed random variables whose common

distribution has finite fourth moment and, as usual, let µ and σ2 stand for the population mean and

variance, respectively. Now, consider the following version of the sample variance based on the first

n observations:

s̃2n =
1

n

n∑
i=1

(Xi −Xn)2 (3.4.3)

It will be shown that

s̃2n
P−→σ2. (3.4.4)

To achieve this goal, note that

s̃2n =
1

n

n∑
i=1

(Xi −Xn)2 =
1

n

n∑
i=1

(Xi − µ)2 − (Xn − µ)2. (3.4.5)

and observe that following facts (a) and (b):

(a) The random variables (X1 − µ)2, (X2 − µ)2, (X3 − µ)2, . . . are independent with the same distri-

bution. Their common expectation is E[(Xi − µ)2] = σ2, whereas their common variance is finite,

since Var
[
(Xi − µ)2

]
≤ E[{(Xi − µ)2}2] < ∞, where the last inequality stems from the condition

E[X4
i ] <∞. Therefore, the law of large numbers in Theorem 3.4.1 yields that

1

n

n∑
i=1

(Xi − µ)2
P−→σ2.
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(b) It will be shown that

(Xn − µ)2
P−→ 0.

To this end, let ε > 0 and observe that

P [|(Xn − µ)2 − 0| > ε] = P [(Xn − µ)2 > ε]

= P [|Xn − µ| >
√
ε]→ 0 as n→∞

,

where the convergence is due to the fact that Xn → µ, by Theorem 3.4.1. Next, use (3.4.5) to obtain

|s̃2n − σ2| > ε ⇐⇒

∣∣∣∣∣
(

1

n

n∑
i=1

(Xi − µ)2 − (Xn − µ)2

)
− σ2

∣∣∣∣∣ > ε

⇐⇒

∣∣∣∣∣
(

1

n

n∑
i=1

(Xi − µ)2 − σ2

)
− (Xn − µ)2

∣∣∣∣∣ > ε

=⇒

∣∣∣∣∣ 1n
n∑
i=1

(Xi − µ)2 − σ2

∣∣∣∣∣ > ε

2
or (Xn − µ)2 >

ε

2

so that

[|s̃2n − σ2| > ε] ⊂

[∣∣∣∣∣ 1n
n∑
i=1

(Xi − µ)2 − σ2

∣∣∣∣∣ > ε

2

]
∪
[
(Xn − µ)2 >

ε

2

]
,

and then

P [|s̃2n − σ2| > ε] ≤ P

[∣∣∣∣∣ 1n
n∑
i=1

(Xi − µ)2 − σ2

∣∣∣∣∣ > ε

2

]
+ P

[
(Xn − µ)2 >

ε

2

]
.

Letting n go to ∞, properties (a) and (b) above yield that the two terms in the right-hand side of

this display converge to 0 as n→∞, so that P [|s̃2n − σ2| > ε]→ 0, establishing (3.4.4). tu

If Wn
P−→ a, where a is a constant, the it is said that Wn estimates a consistently. Thus, the

law of large numbers in Theorem 3.4.1 states that Xn estimates µ consistently, or that {Xn} is a

consistent sequence of estimators of µ, whereas part (iii) in Example 3.4.1 states that s̃2n estimates

the population variance σ2 consistently.

3.5. Sample Size in a Survey

The ideas studied so far will be now used to study a basic the problem in the design of a sampling

survey, namely determining the size of the sample to achieve a desired precision/confidence goal.

Suppose that it is required to approximate µ with an error of at most ε > 0 (this number ε represents

the precision). Of course, when the observed data involve randomness, generally no interesting

assertion can be made with complete certainty, but usually there exists the possibility of making

an incorrect statement based on the observations. Thus, the question is how to guarantee that the
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difference between µ and the approximation Xn does not exceed ε with ‘high probability’ say γ,

which is close to 1 (this number γ is the confidence level). Thus, the problem is

• To determine a sample size n such that P [|Xn − µ| ≤ ε] ≥ γ.

This problem can be studied using (3.4.1). First, note that P [|Xn − µ| ≤ ε] ≥ γ is equivalent to

P [|Xn − µ| > ε] < 1− γ

Next observe that, by (3.4.1), the above inequality holds if
σ2

ε2n
< 1− γ which yields

σ2

ε2(1− γ)
< n (3.5.1)

and any sample size n satisfying this inequality suffices to ensure that, with probability at least γ,

the difference |Xn−µ| does not exceed ε. Note that to determine n satisfying (3.5.1) it is necessary

to know the population variance σ2, or at least an upper bound for such a figure.

(ii) Let X1, X2, . . . , Xn, . . . be random variables with Bernoulli (p) distribution (the Bernoulli dis-

tribution with parameter p ∈ [0, 1]), so that µ = p and σ2 = p(1 − p). Suppose that p is unknown

and will be approximated with Xn, the sample mean based on n observations. Since σ2 = p(1− p)

depends on p, σ2 is unknown and an upper bound must be determined before using (3.5.1). To find

an upper bound for the variance σ2, set

f(p) = p(1− p)

and recall that p ∈ [0, 1]. Now, the maximum value attained by f in [0, 1] will be determined. To

this end, first note that f is differentiable everywhere, and that f ′(p) = 1 − 2p = 0 has the unique

solution p = 1/2. Thus, f attains its maximum at p = 1/2 or at the extreme points 0 and 1 of its

domain. Since f(0) = 0 = f(1) and f(1/2) = 1/4 it follows that the maximum of f is 1/4 and then

1

4
≥ p(1− p) = σ2.

Consequently, the inequality in (3.5.1) will be satisfied if

1

4ε2(1− γ)
=

1/4

ε2(1− γ)
< n

Assume that it is desired to approximate p with an error at most 0.03 with confidence level 0.95, so

that γ = 0.95 and ε = 0.03. In this case, the above expression yields that

1

4(0.03)2(1− 0.95)
≤ n

and then 5/(0.3)2 = 50000/9 = 5555.5 < n. In short, a sample size of 5556 suffices to ensure that,

with probability 0.95 or more, Xn and p differ by at most 0.03. It must be observed that (3.5.1) was
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obtained from Chebishev inequality, which usually is not sharp. Thus, it might be expected that

smaller values of n will be sufficient to ensure the desired maximum error with the given confidence

level. In practice, samples with size about 1200 are taken and it is ensured that, with confidence 0.95

the difference between p and Xn does not exceed 0.03. The method used to obtain this ‘reduced’

value of n involves the central limit theorem and will be discussed in the next chapter.
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Chapter 4

Asymptotic Normality

4.1. Introduction

Throughout the remainder, X1, X2, X3, . . . is a sequence of independent and identically distributed

random vectors whose common distribution has finite moment of order two, at least. This condition

is naturally satisfied in sampling theory where the underlying population is a finite set. However,

in that context, the exact distribution of the estimators of such quantities as the population total

or average is impossible to determine, since the whole set values of the study variable are not

known. The material presented below is extremely helpful in that context, since under minimal

conditions, the normal distribution can be used to approximate the exact (but unknown) distribution

of the statistic under consideration, result that is discussed in Section 2. The approximation result

is also relevant to determine the a sample size, which is generally substantially smaller that the

one obtained using Chebishev inequality, but allows to achieve a desired precision with a given

confidence level, a topic that is presented in Section 3. Next, in Section 4 it is shown that asymptotic

normality is preserved under the application of smooth (differentiable) functions, result that is

illustrated in Section 5 determining the limit distribution of the coefficient of variation and a risk

ratio, and the exposition concludes in Section 6 with some examples concerning variance stabilizing

transformations, that is, functions that when applied to the relevant statistic have the effect that

the variance of the asymptotic distribution is constant.

4.2. Central Limit Theorem
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The law of large numbers reveals a fundamental property of the sample mean Xn, namely, it comes

closer to the population mean µ as n increases, so that Xn−µ is ‘small’ if n is large enough. Recall

now that, for a sample of size n from a population with finite variance σ2, the variance of Xn is

σ2/n, and the standardized sample mean for n observations X1, X2, . . . , Xn is given by

X
∗
n =

Xn − µ√
σ2/n

=
√
n
Xn − µ

σ
; (4.2.1)

note that X
∗
n is obtained multiplying the ‘small’ quantity Xn−µ by

√
n/σ, which is a ‘large’ figure.

The following classical Central Limit Theorem shows that
√
n/σ acts as ‘a magnifying glass’ allowing

to observe the difference in Xn−µ in detail. Essentially, such a result establishes that, for ‘any’ set

A ⊂ IR, the probability that the standardized mean X
∗
n belongs to a set A can be approximated by

the probability that Z ∈ A, where Z is a random variable with the standard normal distribution.

Theorem 4.2.1. Let X1, X2, X3, . . . be independent and identically distributed random variables

with finite mean µ and variance σ2 ∈ (0,∞). In this case, , for every interval A ⊂ IR

P [X
∗
n ∈ A]→ P [Z ∈ A], where Z ∼ N (0, 1);

more explicitly,

lim
n→∞

P [X
∗
n ∈ A] = 4.1A

1√
2π
e−z

2/2 dz. (4.2.2)

A proof of this result can be found in Dudewicz and Mishra (1988), or Ash (2000).

Remark 4.2.1. Two alternative notations are used to indicate that (4.2.2) holds:

X
∗
n

d−→Z where Z ∼ N (0, 1),

(which is red as ‘X
∗
n converges in distribution to Z’), or

X
∗
n

d−→N (0, 1), (4.2.3)

which is red as ‘X
∗
n converges to the N (0, 1) distribution’.

(ii) Instead of analyzing the distribution of X
∗
n, frequently it is more convenient to study

√
n(Xn −

µ) = σX
∗
n Suppose that (4.2.2) holds, and let A = (a, b) a given interval, In this case,

P [
√
n(Xn − µ) ∈ A] = P [

√
n(Xn − µ) ∈ (a, b)]

= P

[√
n
Xn − µ

σ
∈ (a/σ, b/σ)

]
= P [X

∗
n ∈ (a/σ, b/σ)]

→ 4.1
b/σ
a/σ

1√
2π
e−z

2/2 dz
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and using the change of variable z = y/σ in the last integral it follows that

P [
√
n(Xn − µ) ∈ A]→ 4.1ba

1√
2πσ2

e−y
2/[2σ2] dy

Therefore,

P [
√
n(Xn − µ) ∈ A]→ P [W ∈ (a, b)] = P [W ∈ A], where W ∼ N (0, σ2)

and the following notation is used for this convergence:

√
n(Xn − µ)

d−→W where W ∼ N (0, σ2),

or
√
n(Xn − µ)

d−→N (0, σ2). (4.2.4)

Note that this argument shows that

X
∗
n

d−→N (0, 1) ⇐⇒
√
n(Xn − µ)→ N (0, σ2). tu

Example 4.2.1. (i) Suppose that X1, X2, X3, . . . is a sequence of independent random variables with

common distribution P(λ) (the Poisson distribution with parameter λ). In this case µ = λ = σ2,

and then
√
n(Xn − λ)

d−→N (0, λ).

(ii) If X1, X2, X3, . . . is a sequence of independent and identically distributed with common distri-

bution Bernoulli (p). In this case µ = p and p(1− p) = σ2. Hence,
√
n(Xn − p)

d−→N (0, p(1− p)).

tu

The following extension of Theorem 4.2.1 to the multivariate case is a most important result.

Theorem 4.2.2. [Multivariate Central Limit Theorem.] Let X = (X1, X2, . . . , Xk)′ be a random

vector with mean µ and variance matrix M , that is,

µ = (µ(1), µ(2), . . . , µ(k))′ = (E[X1], E[X2], . . . , E[Xk])′

M = [mi j ] = Cov (Xi, Xj) .

Suppose that X1,X2,X3, . . . , is a sequence of independent and identically distributed random vec-

tors with the same distribution as X. In this case, given a region A ⊂ IRk,

√
n[(Xn − µ) ∈ A]→ 4.1A

1

(2π)n/2|M |
e−xM

−1x/2 dx (4.2.5)
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where Xn = (X1 + X2 + · · ·+ Xn)/n is the sample mean of the first n observation vectors.

The notation
√
n [Xn − µ]

d−→Nk(0,M) (4.2.6)

will be used to indicate that (4.2.5) holds.

4.3. Sample Size

Theorem 4.2.1 is a extremely important result in statistics. It is quite general, in the sense that

convergence (4.2.2) occurs for any distribution with finite mean and variance. The central limit

theorem can be used to analyze the problem of determining the necessary sample size to achieve a

specified precision with a given confidence level. As it is discussed below, the bounds for the sample

size will be sharper than the ones obtained via Chebishev inequality.

• Suppose that it is required to approximate µ with an error of at most ε > 0 and a confidence level

at least γ ∈ (0, 1), so that

P [|Xn − µ| ≤ ε] ≥ γ. (4.3.1)

The problem is to determine a sample size n such that this relation is satsified.

To begin with observe that

P [|Xn − µ| ≤ ε] = P

[∣∣∣∣√n(Xn − µ)

σ

∣∣∣∣ ≤ √nεσ
]

≈ P
[
|Z| ≤

√
nε

σ

] (4.3.2)

where the approximation is based on Theorem 4.2.1 and Z has the standard normal distribution.

Next, let zα be the (right-)percentil of Z of order α, so that P [Z > zα] = α, and then

P [|Z| ≤ zα] = 1− 2α.

Selecting α in such a way that 1− 2α = γ, that is, α = (1− γ)/2 it follows that

P [|Z| ≤ z(1−γ)/2] = γ.

Combining this equality with (4.3.2) it follows that

P [|Xn − µ| ≥ ε] ≈ γ if

√
nε

σ
≈ z(1−γ)/2,

and direct calculations solving the above approximation for n lead to

n ≈ σ2

ε2
z2(1−γ)/2. (4.3.3)
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and any sample size n satisfying this relation suffices to ensure that |Xn−µ| does not exceed ε with

an approximate probability γ.

Comparing the above expression with relation (3.5.1) obtained from Chebishev inequality, note that

the right hand side of (4.3.3) is obtained from (3.5.1) replacing
1

1− γ
by z2(1−γ)/2. For instance,

consider the case γ = 0.95, and then 1/(1 − γ) = 20, whereas z(1−γ)/2 = z0.025 = 1.959964,

and then z2(1−γ)/2 = 3.841459, so that the size n obtained from Chebishev inequality in (3.5.1) is

20/3.841459 ≈ 5.2 times the value of n obtained form the approximation of the central limit theorem.

As a specific illustration, consider the problem of estimating the parameter of the Bernoulli (p)

distribution. Suppose that it is desired to estimate p with an error at most ε = 0.03 with probability

γ = 0.95, In this case (4.3.3) yields that

n ≈ σ2

ε2
z2(1−0.95)/2 = 1067.072,

where the unknown value of σ2 was replaced by its upper bound 1/4. This relation states that about

1110 observations are sufficient to ensure that the difference between Xn and p will be less than

0.03 with approximate probability 0.95. Note that, in contrast with (3.5.1), the expression (4.3.3)

is just an approximation for the value of the sample size n. Thus, it is natural to ask how good is

the approximation in (4.3.3). In the present case, the following recommendation has been obtained

from empirical (computational) studies: The approximation (4.3.3) is satisfactory if np ≥ 30 and

n(1− p) ≥ 30, that is, if

nmin{p, 1− p} ≥ 30.

For instance, for p = 0.3, this condition sates that n(0.03) ≥ 30, or n ≥ 1000, and then a sample

size of n = 1067 gives a probability near to 0.95 of observing a difference of at most 0.3 between p

and Xn when the true (but unknown) value of min{p, 1− p} is 0.3 or larger. tu

4.4. Smooth Transformation Theorem

In the section a property of a sequence of estimators {ĝn} of a parametric function g(θ) is introduced.

The idea is to combine the consistency of the estimators ĝn with the statement that, as n increases

and after normalizing the difference between the estimator and the unknown parametric quantity,

the resulting sequence is approximately normally distributed with mean g(θ). The formal definition

of this idea is presented below.

Definition 4.4.1. Consider a parametric function g: Θ→ IRd defined on the parameter space Θ and

taking values in IRd, and for each positive integer n let ĝn be an estimator of g(θ) based on the
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first n observations X1, X2, . . . , Xn. In this case, the sequence {ĝn} of estimators is consistent and

asymptotically normal with mean µ and variance V (θ) if, and only, if

√
n [ĝn − g(θ)]

d−→N (0, V (θ));

where V (θ) is square nonnegative matrix of order d × d. In this case, V (θ) is referred to as the

asymptotic variance of
√
n [ĝn − g(θ)].

The main objective of this section is to establish invariance property of the convergence to normality,

which can be roughly stated as follows: If a sequence of random vectors {Wn} converges to a (mul-

tivariate) normal distribution, and if g is a smooth (differentiable) function, then the transformed

sequence {g(Wn)} also converges to a normal distribution. This fundamental result is formally

stated below in the following theorem.

The following result establishes that convergence to normality is not altered under the application

of differentiable transformations.

Theorem 4.4.1. Suppose that {Wn} is a sequence of k-dimensional random vectors such that

√
n [Wn − µ]

d−→Nk(0,M)

for some nonnegative matrix M of order k× k and µ ∈ IRk. In this case, let g be a function defined

on an open set of IRk containing the vector µ, suppose that g takes value in IRd and that g is

differentiable at µ. In this case

√
n [g(Wn)− g(µ)]

d−→Nd(0, Dg(µ)MDg(µ)′),

where Dg(µ) is the (matrix) derivative of g at µ, which has order d× k.

Note that if {Wn} is asymtotically normal with mean µ and variance M , this result establishes

that {g(Wn)} is asymptotically normal with mean g(µ) and variance Dg(µ)MDg(µ)′. The following

example illustrates the transformation theorem .

Example 4.4.1. Suppose that X1, X2, X3 . . . , is a sequence of independent and identically distributed

random variables with mean µ and variance σ2 <∞. The central limit theorem yields that

√
n [Xn − µ]

d−→N
(
0, σ2

)
. (4.4.1)

Now, the asymptotic distribution of some transformations {g(Xn)} will be obtained by an application

of Theorem 4.4.1.
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(i) g(x) = ex. In this case, g(Xn) = eXn , and observing that Dg(x) = g′(x) = ex, it follows that

Dg(µ) = eµ. Hence, starting from (4.4.1), an application of Theorem 4.4.1 leads to

√
n [eXn − eµ]

d−→N
(
0, eµσ2eµ

)
= N

(
0, e2µσ2

)

(ii) g(x) = sin(x). For this function, g(Xn) = sin(Xn), and Dg(x) = g′(x) = cos(x), so that

Dg(µ) = cos(µ). Thus, (4.4.1), and Theorem 4.4.1 together imply that

√
n [sin(Xn)− sin(µ)]

d−→N (0, cos(µ)σ2 cos(µ)) = N (0, cos(µ)
2
σ2)

(iii) Consider now that transformation g(x) = (ex, sin(x))′. This function transforms IR = IR1 into

IR2, and its derivative Dg is the following matrix of order 2× 1:

Dg(x) =

 d

dx
ex

d

dx
sin(x)

 =

[
ex

cos(x)

]
.

Therefore,
√
n [g(Xn)− g(µ))

d−→N2(0, Dg(µ)σ2Dg(µ)′);

more explicitly,

√
n

[(
eXn

sin(Xn)

)
−
(

eµ

sin(µ)

)]
d−→N

([
0
0

]
,

[
eµ

cos(µ)

]
σ2[eµ cos(µ)]

)
= N

([
0
0

]
, σ2

[
e2µ eµ cos(µ)

eµ cos(µ) cos2(µ)

])
. tu

Example 4.4.2. Let X1, X2, X3, . . . be independent random variables from the Bernoulli (p) popu-

lation, where the parameter p ∈ (0, 1) is unknown. The first population moment is p, so that the

moments estimator of p is p̂n = Xn. Since the population variance is σ2 = p(1−p), the central limit

theorem yields that
√
n [Xn − p]

d−→N (0, p(1− p))

Consider now the smooth function

g(p) = arcsin(
√
p),

so that

Dpg(p) = g′(p) =
d

dp
arcsin(

√
p) =

1√
1− (

√
p)2

1

2
√
p

=
1

2

1√
p(1− p)

.

An application of Theorem yields that

√
n [arcsin(Xn)− arcsin(p)] =

√
n [g(Xn)− g(p)]

d−→N (0, Dg(p)p(1− p)Dg(p)) = N
(

0,
1

4

)
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notice that the (asymptotic) variance of the transformed mean—arcsin(Xn)—does not depend on

the value of p; this stabilizing transformation is frequently used when comparing proportions, since

an essential assumption in the analysis of variance is that the standard deviations of the different

populations being compared are the same. tu

.

4.5. Coefficient of Variation and Risk Ratio

In this section Theorem 4.4.1 will be used to find the limit distribution of the coefficient of varia-

tion when that data are obtained form a normal population. Throughout the following discussion

X1, X2, X3, . . . are independent and identically distributed random variables with N
(
µ, σ2

)
distri-

bution. Now, recall that the sample variance

S2
n =

n∑
i=1

(Xi −Xn)2/(n− 1)

satisfies that
(n− 1)S2

n

σ2
∼ χ2

n−1. (4.5.1)

Next let Z1, Z2, . . . , Zn−1 be independent random variables with standard normal distribution. In

the case, since the variables Z2
i are independent with mean 1 and variance 2, the central limit

theorem yields that

√
n− 1

(Z2
1 + Z2

2 + · · ·+ Z2
n−1)/(n− 1)− 1

√
2

d−→N (0, 1);

also, it is known that Z2
1 +Z2

2 +· · ·+Z2
n−1 ∼ χ2

n−1, and using (4.5.1) it is possible to use (n−1)S2
n/σ

2

instead of
∑
Z2
i in the above display to obtain

√
n− 1

S2
n/σ

2 − 1√
2

d−→N (0, 1) ,

which is equivalent to
√
n− 1 [S2

n − σ2]
d−→N

(
0, 2σ4

)
.

Because of the convergence
√
n/
√
n− 1→ 1 as n→∞, it follows that

√
n [S2

n − σ2]
d−→N

(
0, 2σ4

)
.

Consider now the function

g(x) =
√
x, so that Dg(x) = g′(x) = 1/[2

√
x].
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Via Theorem 4.4.1, the two previous displays yield that

√
n [Sn − σ] =

√
n [g(S2

n)− g(σ2)]

d−→N
(
0, g′(σ2

)
(2σ4)g′(σ2)) = N

(
0, σ2/2

)
.

(4.5.2)

• The coefficient of variation

CV =
µ

σ

is naturally estimated by

ĈVn =
Xn

Sn
,

which is the maximum likelihood estimator as well as the moments estimator, and the present

objective is to determine its asymptotic distribution. To achieve this goal, the following the well-

known fact will be used: for the normal model Xn and Sn are independent random variables.

Combining this fact with (4.5.2) and the convergence
√
n [Xn − µ]

d−→N
(
0, σ2

)
, it follows that

√
n

[(
Xn

Sn

)
−
(
µ
σ

)]
d−→N

([
0
0

]
,

[
σ2 0
0 σ2/2

])
(4.5.3)

Next, consider the function transforming a vector in IR2 with no-null second component into the a

real number specified as follows:

g

(
x1
x2

)
=
x1
x2
.

The derivative of g is the matrix of order 1× 2 given by

Dg

(
x1
x2

)
= [∂x1g, ∂x2g] = [1/x2, −x1/x22],

and it follows that

g

(
µ
σ

)
=
µ

σ
= CV, g

(
Xn

Sn

)
=
Xn

Sn
= ĈVn, Dg

(
µ
σ

)
= [1/σ, −µ/σ2],

and then

Dg

(
µ
σ

)[
σ2 0
0 σ2/2

]
Dg

(
µ
σ

)′
= 1 +

µ2

2σ2
= 1 +

CV2

2

Thus, starting with (4.5.3), an application of Theorem 4.4.1 with the function g specified above

yields that

√
n
[
ĈVn − CV

]
=
√
n

[
g

(
Xn

Sn

)
− g

(
µ
σ

)]
d−→N

(
0, 1 +

CV2

2

)
.

Example 4.5.1. Consider samplesX1, X2, . . . , Xn and Y1, Y2, . . . , Yn of the Binomial (p1) and Binomial (p2)

populations, respectively. In health studies, each pi is interpreted as the probability if acquiring some

illness and is ‘small’, whereas the ratio

r =
p1
p2
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is referred as the risk ratio. The moments estimator of r based on the two samples of size n is

r̂n =
Xn

Y n
,

and obtaining an approximation for the distribution of r̂n for large samples is an interesting and im-

portant problem. Notice that
√
n [Xn−p1]

d−→N (0, p1(1− p1)) and
√
n [Y n−p1]

d−→N (0, p2(1− p2)),

by the central limit theorem, and that the independence of the samples implies that

√
n

[[
Xn

Y n

]
−
[
p1
p2

]]
d−→N

([
0
0

]
,

[
p1(1− p1) 0

0 p2(1− p2)

])
. (4.5.4)

Now, consider the function

g(p1, p2) = log(p2/p1) = log(p2)− log(p1),

and notice that

Dg(p1, p2) = (∂p1g(p1, p2), ∂p2g(p1, p2)) =

(
1

p1
,

1

p2

)
,

as well as

Dg(p1, p2)

[
p1(1− p1) 0

0 p2(1− p2)

]
Dg(p1, p2)′ = (1− p1)/p1 + (1− p2)/p2.

and, starting with (4.5.4), an application of Theorem 4.4.1 yields that

√
n [log(Xn/Y n)− log(p1/p2)] =

√
n

[[
Xn

Y n

]
−
[
p1
p2

]]
d−→N

(
0,

1− p1
p1

+
1− p2
p2

)
,

that is,
√
n [log(r̂n)− log(r)]

d−→N
(

0,
1− p1
p1

+
1− p2
p2

)
.

tu

4.6. Additional Examples

In this section more illustrations of the transformation theorem are analyzed.

Example 4.6.1. (i) Suppose that

√
n(Xn − µ)

d−→N (0, σ2),

and consider the function g(x) = x2. In this case g(·) is differentiable everywhere, so that Theorem

4.4.1 implies that {g(Xn)} is asymptotically normal. Since g′(µ) = 2µ, it follows that

√
n(g(Xn)− g(µ)) =

√
n(X2

n − µ2)

d−→N (0, g′(µ)2σ2) = N (0, [2µ]2σ2) = N (0, 4µ2σ2).
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(ii) Suppose that Yi ∼ P(λ), i = 1, 2, . . . , are independent. In this case, E[Yi] = λ = Var [Yi], and

the central limit theorem implies that

√
n(Y n − λ)

d−→N (0, λ) (4.6.1)

Now, consider the function g(x) = 2
√
x, and observe that g′(x) = 1/

√
x, so that [g′(λ)]2 =

[1/
√
λ)]2 = 1/λ, and then

√
n(g(Y n)− g(λ)) = 2

√
n

(√
Y n −

√
λ

)
d−→N (0, [g′(λ)]2λ) = N (0, 1).

(4.6.2)

An interesting aspect in this example is that the asymptotic variance in (4.6.1) depends on λ (fre-

quently an unknown parameter), whereas it is constant in the above convergence. The mapping

g(x) = 2
√
x is referred to as a variance stabilizing function for the Poisson distribution.

(iii) Suppose that Yi ∼ E(λ), i = 1, 2, . . . , are independent; recall the E(λ) stands for the exponential

distribution with density f(x) = λe−λx for x > 0. In this case,

E[Yi] = 1/λ

and

Var [Yi] = 1/λ2,

and the central limit theorem implies that

√
n

(
Y n −

1

λ

)
d−→N

(
0,

1

λ2

)
(4.6.3)

Now, the function g be given by g(x) = ln(x), so that g′(x) = 1/x, and then g′(µ) = g′(1/λ) = λ.

Therefore, [g′(µ)]2σ2 = [λ]2(1/λ2) = 1, and then

√
n(g(Y n)− g(1/λ)) =

√
n
(
ln(Y n)− ln(1/λ)

)
d−→N (0, [g′(1/λ)]2/λ) = N (0, 1);

(4.6.4)

since the asymptotic variance of ln(Y n) is constant, the mapping g(x) = ln(x) is a variance stabilizing

function for the exponential distribution.

(iv) Let Yi ∼ Bernoulli (p), i = 1, 2, . . . , be independent random variables, and observe that E[Yi] = p

and Var [Yi] = p(1− p). By the central limit theorem, it follows that

√
n(Y n − p)

d−→N (0, p(1− p)) (4.6.5)

Now, consider the function g(x) = 2 arcsin(
√
x), x ∈ (0, 1), and observe that

g′(x) = 2
1√

1− (
√
x)2

(
1

2
√
x

)
=

1√
x(1− x)
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Therefore,

[g′(µ)]2σ2 = [g′(p)]2p(1− p) =

[
1√

p(1− p)

]2
p(1− p) = 1

and then Theorem implies that

√
n(g(Y n)− g(λ)) = 2

√
n
(
arcsinY n − arcsinλ

)
d−→N (0, [g′(p)]2p(1− p)) = N (0, 1).

(4.6.6)

Thus, 2 arcsin(·) is a variance stabilizing function for the Bernoulli family of distributions. tu
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Chapter 5

Simple Random Sampling

5.1. Introduction

The basic problem studied in Sampling Theory consists in formulating inferences about a whole

population U using knowledge of just one part (a subset) of U . In principle, the population is

finite, the subset of the population which is analyzed to state the inferences is called the sample and,

generally, it is required to accompany the stated conclusions about the population with an assessment

of their precision or reliability. Such a requirement can be fulfilled if the analyzed sample is chosen via

a random procedure, and this chapter introduces the basic ideas of ‘probability sampling schemes’.

The subsequent material has been organized as follows: In Section 2 the notions of population, sample

and parameter are introduced, and the basic problem in the theory of sampling is formally stated.

Next, in Section 3 two general strategies (or schemes) to select a sample are briefly described, and

they are illustrated by means of two important schemes, namely, the simple and Bernoulli strategies.

Then, the concept of sampling (probability) design is formulated in Section 4, and an alternative

implementation of the simple design is presented in Section 5. Finally, the chapter concludes in

Section 6, which concerns with two notions that will pay important roles in the study of estimation

problems, namely, the ideas of inclusion probabilities and membership indicators.

5.2. Population and Random Samples

Consider a set U with N elements, hereafter referred to as the population, whose elements are

denoted by Ui, i = 1, 2, 3, . . . , N :

U = {U1, U2, U3, . . . , UN}. (5.2.1)
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This set U is an abstract representation of a class of concrete objects. The elements Ui are refereed

to as the units and each one of them conveys some information that is of interest to the analyst.

Such information is represented by a function

Y:U → IRk,

which is referred to as the study variable, and

Yi = Y(Ui), i = 1, 2, 3, . . . , N (5.2.2)

stands for the value that the function Y associates with Ui. For instance, if the population U consists

of all the oranges in a container, Yi may represent the amount of juice that can be extracted for

the i-th orange Ui, whereas if the units Ui are persons, Yi might be the weight of the i-th person,

or the pair (weight, age) for the i-th person. It is assumed that N , the number of elements of the

population, is known, but the function Y is unknown, so that the value Yi associated with Ui can be

determined only after analyzing the unit Ui. Throughout the remainder the interest focuses in two

parameters (this is the technical name for a quantity that depends on all the values Y1, Y2, . . . , YN ):

the population total

Y = Y1 + Y2 + Y3 + · · ·+ YN (5.2.3)

and the population average

Y =
Y1 + Y2 + Y3 + · · ·+ YN

N
. (5.2.4).

The main problem considered below can be sated as follows:

To estimate the population total or average based only

on Yi = Y(Ui) for Ui in a subset S of the population U
(5.2.5)

This problem is important in the common situation that it is impossible, impractical or expensive

to examine all of the units in the population to determine the whole set of values Y1, Y2, . . . , YN ,

and then compute exactly the value of the parameter. However, it is possible that the available

resources (time, budget) allow to examine some units Ui1 , Ui2 , . . . , Uin so that the corresponding Y-

values Yi1 , Yi2 , . . . , Yin can be determined, and the problem is to obtain ‘a reasonable approximation’

of the parameter value using only the information obtained from the analyzed units. The subset of

U for which the values Yi = Y(Ui) are determined is called a sample, so that the above problem can

be stated as follows:

To estimate a population parameter based on the

values Yi corresponding to units Ui in a sample S.
(5.2.6)

Of course, since the parameters Y or Y are unknown, when ‘approximations’ Ŷ or Ŷ are proposed,

a measure of the ‘estimation error’ |Ŷ −Y | must be provided. Such an assessment is possible only if
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the sample used in the analysis was selected via a random mechanism (Lhor, 2010). In this work, all

of the samples considered below will be obtained from U using simple random sampling, as described

below.

5.3. Simple Random Sampling

In this section a basic random sampling method is briefly described. Let n < N be the desired

sample size The simple random sampling scheme (without replacement), which is used to obtain a

sample of size n is as follows:

1. Select a member of the population using a random mechanism assigning probability 1/N to each

one of the N elements of U ;

2. Remove from the population the unit selected in the previous draw and, with equal probability

1/(N − 1), select from the remaining N − 1 elements a new member of the population;

...

n. Remove from the population the units selected in the n − 1 draws already performed and, with

equal probability 1/(N − n+ 1), select a new element from the remaining N − n+ 1 units.

After these steps, a (random) sequence

S̃ = (Ui1 , Ui2 , . . . , Uin) (5.3.1)

is obtained, where Uik is the unit selected in the k-th draw. This is a vector of distinct units taking

values on the space

S̃n: = {s̃ = (u1, u2, . . . , un) |u1, u2, . . . , un are different elements of U}. (5.3.2)

The elements of S̃n are the ordered samples without replacement of size n and are also referred to

as the permutations of size n of the population U . From the above description it follows that

P [S̃ = s̃] =
1

(N)n
=

1

N(N − 1) · · · (N − n+ 1)
, s̃ ∈ S̃n,

that is, all of the ordered samples (permutations) of size n have the same probability of selection.

Finally, a set S is immediately determined form S̃ forgetting the order in which the units were

selected:

S = {Ui1 , Ui2 , . . . , Uin}. (5.3.3)

This set is a member of the family

Sn = {s| s is a subset of size n of U}
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which consists of all subsets (samples) of size n of U . Since the elements of a set of size n can be

arranged into a sequence in n! forms, it follows that

P [S = s] =
n!

(N)n
=

1(
N
n

) , s ∈ S, (5.3.4)

so that all of the (unordered) samples of size n have the same probability of selection.

Definition 5.3.1. Given a sample S as in (5.3.3), let

yj = Y(Uij ), j = 1, 2, . . . , n (5.3.5)

by the information associated to the j-th unit in the sample.

(i) The sample mean (or average) is denoted by y and is defined by

y =
y1 + y2 + · · ·+ yn

n
.

(ii) The estimators Ŷ and Ŷ of the population average and total, respectively, are given by

Ŷ = y, Ŷ = Ny. (5.3.6)

For every positive integer r ≤ N , the indicator random variable Ir ≡ Ir(S) of the unit Ur is defined

by

Ir(S) =

{
1, if Ur ∈ S,
0, if Ur 6∈ S.

(5.3.7)

With this notation, a glance at (5.3.3) and (5.3.5) yields that

n∑
i=1

yi =

N∑
r=1

Ir(S)Yr

and then

Ŷ = y =
1

n

N∑
r=1

Ir(S)Yr, Ŷ = Ny =
N

n

N∑
r=1

Ir(S)Yr. (5.3.8)

5.4. Mean and Variance of the Estimators

Under the simple random sampling previously introduced, in this section the expectation and vari-

ance of y will be computed. First, it will be assumed that the study variable is scalar, that is, takes

values in IR.

Theorem 5.4.1. Under the simple random sampling scheme with sample size n,

E[y] = Y , and Var [y] =

(
1

n
− 1

N

)
S2
Y ,
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where

S2
Y =

1

N − 1

N∑
k=1

(Yk − Y )2 (5.4.1)

is the population variance of Y1, Y2, . . . , YN .

The proof of this result relies on the following lemma.

Lemma 5.4.1. Under the simple random sampling scheme with sample size n,

E[Ir] =
n

N

Var [Ir] =
n

N

(
1− n

N

)
Cov (Ir, It) = − n

N

(
1− n

N

) 1

N − 1
, r 6= t

.

Proof. Let Sn be the family of all subsets of U with n elements, so that P [S = s] > 0 if, and only

if, s ∈ Sn; recall that

P [S = s] =
1(
N

n

) , s ∈ Sn.

Next, observe that Ir = Ir(S) is a Bernoulli variable, that is, it attains just the values 0 and 1;

moreover, Ir(S) = 1 if and only if Ur ∈ S. Since there are
(
N−1
n−1

)
subsets of S with n elements that

include Ur, it follows that

P [Ir = 1] =
∑

s∈Sn:Ur∈s
P (S = s] =

∑
s∈Sn:Ur∈s

1(
N
n

) =

(
N−1
n−1

)(
N
n

) ;

using the identity (
N

n

)
=
N

n

(
N − 1

n− 1

)
(5.4.2)

it follows that

P [Ir = 1] =
n

N
, and then Ir ∼ Bernoulli (n/N) .

Applying the well-known formulas for the mean and variance of the Bernoulli (p) distribution, it

follows that

E[Ir] =
n

N
and Var [Ir] =

n

N

(
1− n

N

)
.

Now, let r and t be two positive different integers less than or equal to N and observe that Ir(S)It(S)

attains just two values, 0 and 1, and that Ir(S)It(S) = 1 if, and only if, Ur ∈ S and Ut ∈ S, so that

P [Ir(S)It(S) = 1] = P [Ur ∈ S,Ut ∈ S]

=
∑

s∈Sn:Ur∈s, Ut∈s
P [S = s]

=
∑

s∈Sn:Ur∈s, Ut∈s

1(
N
n

) ,
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To conclude, recall that there are
(
N−2
n−2

)
samples of size n containing Uj and Uk, so that that

P [Ir(S)It(S) = 1] =

(
N − 2

n− 2

)
(
N

n

) =
n(n− 1)

N(N − 1)
, r 6= t,

where the last equality is due to the relation

(
N

n

)
=
N(N − 1)

n(n− 1)

(
N − 2

n− 2

)
, which follows applying

(5.4.2) twice. Thus, E[IrIt] =
n(n− 1)

N(N − 1)
and then

Cov (Ir, It) = E[IrIt]− E[Ir]E[It]

=
n(n− 1)

N(N − 1)
− n

N

N

N

=
n

N

(
n− 1

N − 1
− n

N

)
= − 1

N − 1

n

N

(
1− n

N

)
,

and the proof is complete. tu

Proof of Theorem 5.4.1. The argument combines the previous lemma with formula (5.3.8). Note

that

E[y] =
1

n
E

[
N∑
k=1

IkYk

]
=

1

n

N∑
k=1

YkE [Ik] =
1

n

N∑
k=1

Yk
n

N
=

1

N

N∑
k=1

Yk = Y .

On the other hand, to compute the variance of y it is convenient to use the following notation,

τ =
n

N

(
1− n

N

)
.

Then, the conclusions of Lemma 5.4.1 yield that t

Var [Ik] = τ and Cov (Ik, It) = − 1

N − 1
τ.

Therefore,

Var [y] = Var

[
1

n

N∑
k=1

YkIk

]

=
1

n2
Var

[
N∑
k=1

IkYk

]

=
1

n2

 N∑
k=1

Y 2
k Var [Ik] +

∑
1≤j 6=k≤N

YjYkCov (Ii, Ik)


=

1

n2

 N∑
k=1

Y 2
k τ −

∑
1≤j 6=k≤N

YjYk
τ

N − 1


=

τ

n2

 N∑
k=1

Y 2
k −

1

N − 1

∑
1≤j 6=k≤N

YjYk

 .
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Now observe that

N2Y
2

=

(
N∑
k=1

Yk

)2

=

N∑
k=1

Yk

N∑
j=1

Yj =
∑

1≤j,k≤N

YjYk =

N∑
k=1

Y 2
k +

∑
1≤j 6=k≤N

YjYk

so that ∑
1≤j 6=k≤N

YjYk = N2Y
2 −

N∑
k=1

Y 2
k

and then

Var [y] =
τ

n2

[
N∑
k=1

Y 2
k −

1

N − 1

(
N2Y

2 −
N∑
k=1

Y 2
k

)]
.

=
τ

n2

[
N∑
k=1

Y 2
k +

1

N − 1

N∑
k=1

Y 2
k −

N2

N − 1
Y

2

]
.

=
τ

n2
N

N − 1

[
N∑
k=1

Y 2
k −NY

2

]
.

Using the identity

N∑
k=1

(Yk − Y )2 =

N∑
k=1

Y 2
k −NY

2
, it follows that

Var [y] =
τ

n2
N

N − 1

N∑
k=1

(Yk − Y )2

=
N

n2
τ

1

N − 1

N∑
k=1

(Yk − Y )2 =
N

n2
τS2

Y .

Finally, observe that
N

n2
τ =

N

n2
n

N

(
1− n

N

)
=

1

n

(
1− n

N

)
=

1

n
− 1

N
,

and the desired expression for Var [y] follows combining the two last displays. tu

Example 5.4.1. Suppose that the study variable is a bi-dimensional vector, say

Zi = Z(Ui) =

[
Yi
Xi

]
.

In this case, given the sample S = {Ui1 , Ui2 , . . . , Uin} the information obtained from the unit j-th

unit in the sample is

zj = Z(Uij ) =

[
yj
xj

]
,

and

z =

[
y
x

]
.

The objective of this example is to determine

V = Var [z] =

[
Var [y] Cov (y, x)

Cov (x, y) Var [x]

]
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Of course, from Theorem 5.4.1 it is known that

Var [y] =

(
1

n
− 1

N

)
S2
Y and Var [x] =

(
1

n
− 1

N

)
S2
X ,

where S2
X is as in (5.4.1) with the study variable Xi instead of Yi. To determine Cov (y, x), define

the new study variable,

Wi = Yi +Xi, i = 1, 2, . . . , N,

so that W = Y +X and

S2
W =

1

N − 1

N∑
k=1

(Wi −W )2

=
1

N − 1

N∑
k=1

(Yi +Xi − [Y + tX])2

=
1

N − 1

N∑
k=1

([Yi − Y ] + [Xi −X])2

=
1

N − 1

[
N∑
k=1

(Yi − Y )2 +

N∑
k=1

(Xi −X)2 + 2

N∑
k=1

(Yi − Y )(Xi −X)

]
= S2

Y + S2
X + 2SY X

(5.4.3)

where

SY X =
1

N − 1

N∑
k=1

(Yi − Y )(Xi −X)

The W values obtained form the sample are wj = yj + xj , j = 1, 2, . . . , n, and then

w = y + x

Now, Var [w] will be computed in two ways:

• Using the formula for the variance of a sum,

Var [w] = Var [y + x] = Var [y] + Var [x] + 2Cov (y, x)

• Applying Theorem 5.4.1 with the study variable W instead of Y

Var [w] =

(
1

n
− 1

N

)
S2
W

=

(
1

n
− 1

N

)[
S2
Y + S2

X + 2SY X
]

=

(
1

n
− 1

N

)
S2
Y +

(
1

n
− 1

N

)
S2
X + 2

(
1

n
− 1

N

)
SY X

= Var [y] + Var [x] + 2

(
1

n
− 1

N

)
SY X
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where the second equality is due to (5.4.3). Comparing the two last displays, it follows that

Cov (y, x) =

(
1

n
− 1

N

)
SY X . (5.4.4)

To conclude this section, the limit distribution of y will be discussed: Suppose that

N →∞, n→∞, and
n

N
→ 0. (5.4.5)

This condition means that the sample and population sizes under consideration are ‘big’, but the

sample size is ‘small’ when compared with the population size.

Theorem 5.4.2. Under condition (5.4.5)

√
n(y − Y )

d−→N (0, S2
Y ). (5.4.6)

and
√
n

([
x
y

]
−
[
X
Y

])
d−→N

([
0
0

]
,

[
S2
X SY X

SXY S2
Y

])
. (5.4.7)

This result was used in Section 3.5 to determine the sample size to achieve a required precision with

a desired confidence level.

5.5. Ratio Estimator

Consider the problem of estimating the population total for the study variable Y, which is given in

(5.2.3), and suppose that there is other interesting feature of the population units which is given by

the quantity Xi for the unit Ui. It is supposed that the total of this additional study variable, given

by

X = X1 +X2 +X3 + · · ·+XN ,

is known. Under this condition, define

ŶR =
y

x
X (5.5.1)

which is known as the ratio estimator for the total Y . The main objective of the section is to compare

the mean quadratic error of this estimator with the variance of the usual estimator Ŷ defined in

(5.3.6). The main result is the following

Theorem 5.5.1. Under (5.4.5),

E[(Ŷ − Y )2]

E[(ŶR − Y )2]
≈ S2

Y

S2
X

(
Y

X

)2
− 2SXY

Y

X
+ S2

Y

. (5.5.2)
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Remark 5.5.1. The above theorem provides a guide to decide which estimator Ŷ or ŶR to use when

estimating the population total Y . Of course, these comments make sense when condition (5.4.5)

holds, that is, if the sample and population sizes n and N are large, and n is small compared with

N . In this context, (5.5.2) yields that

ŶR is preferred to Ŷ ⇐⇒ E[(ŶR − Y )2] < E[(Ŷ − Y )2]

⇐⇒ S2
Y > S2

X

(
Y

X

)2

− 2SXY
Y

X
+ S2

Y

⇐⇒ 2SXY
Y

X
> S2

X

(
Y

X

)2

⇐⇒ SXY
SXSY

>
1

2

SX
SY

Y

X

⇐⇒ ρXY >
1

2

CV (X)

CV (Y )

where ρXY is the population correlation coefficient between x and Y , whereas CV (X) = SX/X

and CV (Y ) = SY /Y are the coefficients of variation of X and Y , respectively. Thus, use the ratio

estimator if X and Y are ‘highly correlated’; if CV (X) and CV (Y ) are similar, a correlation larger

than 1/2 is sufficient to ensure that the ratio estimator is preferred to the usual estimator. tu

The proof of Theorem 5.5.1 is somewhat technical. To begin with observe that

Var
[
Ŷ
]

= Var [Ny] = N2Var [y] = N2

(
1

n
− 1

N

)
S2
Y .

Thus, under (5.4.5),
n

N2
Var

[
Ŷ
]

=
(

1− n

N

)
S2
Y → S2

Y and then

n

N2
E[(Ŷ − Y )2] =

n

N2
Var

[
Ŷ
]
≈ S2

Y ; (5.5.3)

note that, since Ŷ is unbiased, Var
[
Ŷ
]

coincides with the mean square error E[(Ŷ −Y )2]. The next

step consists in determining an approximation for the mean square error of ŶR. The argument relies

on the following theorem.

Theorem 5.5.2. Under 5.4.5,

√
n

(
y

x
− Y

X

)
d−→N

([
0
0

]
,

1

X
2

[
S2
X

(
Y

X

)2

− 2SXY
Y

X
+ S2

Y

])
. (5.5.4)

Proof. Set

f(x, y) =
y

x
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so that

Df(x, y) = (∂xf(x, y), ∂fy(x, y)) =

(
− y

x2
,

1

x

)
.

Combining (5.4.7) with Theorem 4.4.1 it follows that

√
n

(
f

[
x
y

]
− f

[
X
Y

])
d−→N

([
0
0

]
, Df(X,Y )

[
S2
X SY X

SXY S2
Y

]
Df(X,Y )′

)
. (5.5.5)

Next, observe that

(a) f

[
x
y

]
=
y

x
,

(b) f

[
X
Y

]
=
Y

X
,

(c) Df(X,Y ) =

(
− Y

X
2 ,

1

X

)
, and

(d) The variance in the right-hand side of (5.5.5) simplifies to

Df(X,Y )

[
S2
X SY X

SXY S2
Y

]
Df(X,Y )′ =

(
− Y

X
2 ,

1

X

)[
S2
X SY X

SXY S2
Y

]− Y

X
2

1

X


= S2

X

(
Y

X
2

)2

− 2SXY
Y

X
2

1

X
+ S2

Y

(
1

X

)2

=
1

X
2

[
S2
X

(
Y

X

)2

− 2SXY
Y

X
+ S2

Y

]

Thus, (5.5.5) is equivalent to

√
n

(
y

x
− Y

X

)
d−→N

([
0
0

]
,

1

X
2

[
S2
X

(
Y

X

)2

− 2SXY
Y

X
+ S2

Y

])

which is the desired conclusion. tu

Proof of Theorem 5.5.1. Note that Theorem 5.5.2 implies that

X
√
n

(
y

x
− Y

X

)
d−→N

([
0
0

]
,

[
S2
X

(
Y

X

)2

− 2SXY
Y

X
+ S2

Y

])
, (5.5.6)

so that

E

[
y

x

]
≈ Y

X
,

Var

[
X
√
n

(
y

x
− Y

X

)]
≈ S2

X

(
Y

X

)2

− 2SXY
Y

X
+ S2

Y .

(5.5.7)

On the other hand, using that Y /X = Y/X and X = NX, it follows that

√
n

N

(
ŶR − Y

)
=

√
n

N

(
y

x
X − Y

)
= X

√
n

N

(
y

x
− Y

X

)
= X
√
n

(
y

x
− Y

X

)
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and then the above display yields that

E[ŶR] ≈ Y

n

N2
E[(ŶR − Y )2] = E

[(√
n

N
(ŶR − Y )

)2
]

= E

[(
X
√
n

(
y

x
− Y

X

))2
]

= Var

[
X
√
n

(
y

x
− Y

X

)]
≈ S2

X

(
Y

X

)2

− 2SXY
Y

X
+ S2

Y

and combining this fact with (5.5.3) it follows that

E[(Ŷ − Y )2]

E[(ŶR − Y )2]
=

n
N2E[(Ŷ − Y )2]
n
N2E[(ŶR − Y )2]

≈ S2
Y

S2
X

(
Y

X

)2
− 2SXY

Y

X
+ S2

Y

,

and the proof is complete. tu
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