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Este trabajo trata sobre dos ideas béasicas en Estadistica y su aplicacién a la Teoria del
Muestreo: (i) Desigualdades probabilisticas, las cuales proporcionan una cota para la prob-
abilidad de que una variable aleatoria tome valores ‘grandes’ por medio de los momentos
de la variable, y (ii) Normalidad asintética, una propiedad que desempefia un papel im-
portante en la construccién de intervalos de confianza y en la determinacién de tamanos
de muestra. En el Capitulo 1 se presenta una breve descripcién del trabajo y la organi-
zacién del material subsecuente, mientras que el Capitulo 2 trata sobre las desigualdades
de Markov y Chebishev; en este punto se presenta la principal contribucién de este tra-
bajo, a saber, la determinaciéon de condiciones necesarias y suficientes para que las cotas
proporcionadas por esas desigualdades coincida con la probabilidad bajo estudio. Luego,
en el Capitulo 3 se estudian las ideas de convergencia en probabilidad y en distribucion,
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bajo la aplicacién de transformaciones diferenciables, resultado que se utiliza en el Capitulo
5 para deteminar, bajo el esquema de muestreo aleatorio simple, la distribucién limite del

estimador de razon del total poblacional.
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This work is about two basic statistical ideas applied to Sampling Theory: (i) Probability
inequalities, setting a bound on the probability that a random variable attains large values
in terms of the corresponding moments, and (ii) Asymptotic normality, a property that
plays an important role in the construction of confidence intervals and the determination
of sample sizes. In Chapter 2 Markov and Chebishev inequalities are studied, and the
main contribution of this work is presented, namely, necessary and sufficient conditions
are given so that the bounds provided by the aforementioned relations coincide with the
probability under consideration. In Chapter 3 the ideas of convergence in probability,
convergence in distribution as well as the (weak) law of large numbers are discussed. Next,
Chapter 4 concerns with asymptotic normality and the invariance of this property under
differentiable transformations, result that is finally used in Chapter 5 to analyze, under
simple random sampling, the limit distribution of the ratio estimator of the population

total, and to compare it with the classical estimator.
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Chapter 1

Perspective

1.1. Introduction

This work concerns with basic results in Classical Statistics, which are discussed in the context of the
Theory of Sampling. The exposition includes two main topics: (i) Probability inequalities, setting
bounds on the tails of a probability distributions in terms of moments, and (ii) Asymptotic Normality,
a property stating that under mild conditions the distribution of a standardized average can be
approximated by a normal distribution. The main technical contribution of this work concerns the
first point: necessary and sufficient conditions are given so that Markov and Chebishev inequalities
are sharp, that is, the bound for the probability of large values and the probability itself coincide.
Concerning the second point, the basic invariance property is studied, which establishes that if
an asymptotically normal sequence is transformed by a differentiable function, then the modified
sequence is also asymptotically normal. A very important point of the analysis is the formula relating
the new asymptotic variance with the original one. Such a relation will be used to determine the limit
variance of the ratio estimator of the population total, a result that allows to make a comparison
with the classical estimator for the simple random sampling scheme. In the following lines, the origin

of this work is briefly described, and the organization of the subsequent material is outlined.
1.2. The Origin of This Work

This work is a byproduct of the seminar entitled Mathematical Statistics: FElements of Theory
and Ezxamples, relaunched on July 2016 by the Graduate Program in Statistics at the Universidad

Auténoma Agraria Antonio Narro. The basic aims of the project are:



(i) To be a framework were statistical problems can be freely and fruitfully discussed;

(ii) To promote the understanding of basic statistical and analytical tools through the analysis and

detailed solution of exercises.

(iii) To develop the writing skills of the participants, generating an organized set of neatly solved
examples, which can used by other members of the program, as well as by the statistical communities

in other institutions and countries.

(iv) To develop the communication skills of the students and faculty through the regular participation

in seminars, were the results of their activities are discussed with the members of the program.

The activities of the seminar are concerned with fundamental statistical theory at an intermediate
(non-measure theoretical) level, as in the book Mathematical Statistics by Dudewicz and Mishra
(1998). When necessary, other more advanced references that have been useful are Lehmann and
Casella (1998), Borobkov (1999) and Shao (2002), whereas deeper probabilistic aspects have been
studied in the classical text by Loeve (1984). On the other hand, statistical analysis requires alge-
braic and analytical tools, and the basic references on these disciplines are Apostol (1980), Fulks
(1980), Khuri (2002) and Royden (2003), which concern mathematical analysis, whereas the alge-
braic aspects are covered in Graybill (2000, 2001) and Harville (2008). Initially, the project was
concerned with the theory of Point Estimation and Hypothesis Testing. During the last two years
the seminar has been focused on Sampling Theory at the level of Lohr (2000), Tucker (1992), Hansen
et al. (2002), and Sarndal et al. (1992).

1.3. The Organization

The remainder of this work has been organized as follows: Chapter 2 is concerned with Markov
and Chebishev inequalities, relations that set bounds on the tails of a probability distribution via
the moments of positive order. Those results are valid under minimal conditions and, practically,
are universally valid. However, such a generality naturally implies that the bounds provided by the
aforementioned relations are not sharp, that is, generally the bounds are ‘far from’ the true value.
The main contribution of this work consists in presenting a detailed analysis on the necessary and
sufficient conditions so that the bounds provided by Markov and Chebishev inequalities coincide

with the probability under consideration.

In Chapter 3 two ideas of convergence of random variables are discussed, and the relation between
these two concepts is studied. The presentation includes the notion of convergence in probability

and the concept of convergence in the mean, and the relation between them is analyzed . Also,
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the (weak) law of large numbers is stated , and the discussion is applied to to a basic problem
in problem in survey sampling, namely determining the sample size required to achieve certain

precision/confidence combination.

In Chapter 4 ; the idea of asymptotic normality is studied, and it is shown that the Central Limit
Theorem allows to determine sample sizes which, in spite of being substantially smaller than those
obtained via Chebishev inequality, are sufficient to ensure that desired precision with a given con-
fidence level. It is shown that asymptotic normality is preserved under the application of smooth

(differentiable) functions.

Finally, the exposition concludes in Chapter 5 where, using the the results previously analyzed, the
usual estimator of the population total under simple random sampling is compared with the ratio

estimator.



Chapter 2

Probability Inequalities

2.1. Introduction

%vskip -.25in This chapter is concerned with two results about the the tails of a probability distribu-
tion, namely, Markov and Chebishev inequalities. The first relation concerns a nonnegative random
variable, and sets an upper bound the probability of attaining large values in terms of moments of
positive order, whereas the second inequality uses the variance to provide an upper bound for the
probability of large deviations of a random variable about its mean. As it will be discussed below,
these results are valid under minimal conditions and, practically, are universally valid. However,
such a generality naturally implies that the bounds provided by the aforementioned relations are
not sharp, that is, generally they are ‘far from’ the true value. In this chapter the problem of deter-
mining necessary and sufficient conditions so that the bounds provided by Markov and Chebishev
inequalities coincide with the probability under consideration. The subsequent material has been
organized as follows: In Section 2 Markov and Chebishev inequalities are established, whereas in
Section 3 examples are used to show that, in general, the strict inequality holds in Markov and
Chebishev relations,; however, an example is given to show that the bound in those relations can
be attained in some cases. Next, in Section 4. necessary and sufficient conditions are determined so
that the bound in Markov inequality coincides with the probability under consideration, whereas a

similar result is obtained in Section 5 for Chebishev inequality.

2.2. Chebishev and Markov Inequalities

This section concerns with inequalities involving probability distributions. Using moments of a

random variable X, the relations stated in the following theorem provide bounds for the probability



of the event that X attains ‘large values’.

Theorem 2.2.1. (i) If X is a nonnegative random variable, then for every a,t € (0, c0)

EIX®
PIX >1] < [ta I, (2.2.1)
this is Markov inequality.
(ii) If Y is a random variable with finite mean py = E[Y] and standard deviation oy, then
1
PllY — py| > koy] < =k k> 0; (2.2.2)

this relation is known as Chebishev inequality.

Proof. (i) Keeping in mind that the inequality X > 0 always holds, observe that X* > ¢* if X > ¢,

and X® > 0 if X < ¢. Using the notation of indicator functions, these relations can be expressed as
X > 100X > ]+ 0I[X < t%] = t°T[X > t].
Via the monotonicity of the expectation operator this relation leads to
E[X > t“E[I[X > t]] =t*P[X > t],

and (2.2.1) follows.
(ii) Set X =|Y — py|, t = koy and a = 2. Applying part (i) with his data, it follows that

EllY — py|?]
(koy)?
E[(Y — py)?]
k0%

oy _ 1

a k%03 k2

PlY — py| > koy]

IN

completing the argument. O

Slightly different formulation of the inequalities in the above theorem are discussed below.
Remark 2.2.1. Alternative forms of Markov and Chebishev inequalities.

(i) Using the basic property P[A€] = 1 — P[A] for any event A, note that the inequality P[A] < b is
equivalent to P[A°] > 1 — b, so that (2.2.1) and (2.2.2) can be equivalently written as

E[X*]
ta

PIX <t]>1- , (2.2.3)



and
1
ﬁ 9

relations that are alternative forms of Markov and Chebishev inequalities, respectively.

P [|Y — /Ly‘ < k‘Uy] >1- k>0, (224)

(ii) Given t > 0, consider a sequence {t,} C (0,00) such that t,, \ ¢, that is, t,, > t, for every n

and lim,_, . t, = t. In this case, using that a distribution function is continuous form the right, it

follows that

lim P[X < t,] = P[X <t;

n—oo

see, for instance, Dudewicz and Mishra (1988). Applying (2.2.3) with ¢,, instead of ¢ it follows that

lim P[X <t,] > lim <1 _ E[X“]>

n— 00 n— 00 t%
=1— lim ElX°]
n—o0o t%
L, BX
t(l
Combining these two last displays it follows that
E[X
PX<t|>1- [t“ ], t>0. (2.2.5)
Similarly, starting form (2.2.4), it follows that
1
P[lY — py| < koy] Zlfﬁ, k> 0. (2.2.6)

Again, these relations are alternative forms of Markov and Chebichev inequalities.

(iil) f Y is a random variable with finite mean py and standard deviation oy, then the corresponding

standardized random variable Y* is given by

Yy —
e (2.2.7)
oy
Observing that, for every k£ > 0,
Y*| >k < |Y —py| > koy and Y| <k < |Y —puy| <koy
form (2.2.2) and (2.2.6) it follows that
PllY*| > k] < = and P[Y*| <kl >1- 72 (2.2.8)

Observe that for k£ < 1 these inequalities convey no information.

(iv) Chebishev inequality can be expressed verbally as follows:
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The probability that the random variable Y deviates from its mean by k standard deviations or

more is less that 1/k?.

For instance, P[|Y —py| > 4oy] < 1/4%2 = 1/16 = .0625 and P[|Y —puy| > 5oy] < 1/52 =1/25 = .04
0

The importance of Theorem 2.2.1 stems form its generality: Chebishev and Markov inequalities are

always valid for any random variable with finite moments of the appropriate order.

2.3. Two Examples

The generality behind the conclusions of Theorem 2.2.1 has a price, namely, the bounds in Markov
and Chebishev inequalities are not sharp, that is, usually in (2.2.1) and (2.2.2) the inequality is
strict. In this section an example will be used to illustrate this phenomenon, and an additional
example will be used to show that, eventually, it is possible to observe that the equality occurs. To
continue note that, regardless of the distribution of X, Chebishev inequality (2.2.2) with k£ = 2 and
k = 3 yields that

1 1
Pl|X — pux| > 20x] < 2= and P[|X — ux| > 30x] <

1

1
329

(2.3.1)

Example 2.3.1. For k = 2, 3, the probability P[|X — ux| > kox] will be computed for several known

distributions, and it will be verified that the strict inequalities occur in the above display.

(a) If X ~N(0,1) then px = 0 and ox = 1, so that

1 1
PIIX — x| 2 20x] = 0.04550026 < - and  P[|X — x| > 30x] = 0.002609796 < .

(b) If X ~ P(4) (Poisson distribution with mean 4), then ux = A\ = 4 and 0% = X = 4, so that

ox = 2 and then
PIIX — x| > 20x] = P[|X — 4] > 2(2)
— P[IX — 4 > 4)
=[PX >8]+ P[X =0]

1
= 0.05113362 4 0.01831564 = 0.06944925 < T

whereas
P[|X — px| > 30x]| = P[|X — 4] > 3(2)]

— PIX 4| > ¢

1
= [PX > 10] = 0.002839766 < ;.
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(¢c) If X ~ B(10,0.4) (Binomial distribution with n = 10 repetitions and success probability p = 0.4),
then px = 10(0.4) = 4 and 0% = 10(0.4)(0.6) = 2.4, so that ox = 1.549193 and then

P[|X — x| > 20x] = P[|X — 4] > 2(1.549193)]
= P[|X — 4] > 3.098387]
= [PX >8]+ P[X = 0]
= 0.01229455 + 0.006046618 = 0.01834117 < %;

also
P[|X — ux| > 30x] = P[|X — 4] > 3(1.549193)]

= P[|X — 4] > 4.64758)]
1
= PX > 9] = 0.001677722 < .

In all of the above cases the strict inequalities hold in (2.2.2), showing explicitly that, generally,
P[|X — px| > kox] is strictly less than 1/k2. O

In contrast with the previous example, the following one shows that the equality may hold in

Chebishev inequality, that is, P[|X — ux| > kox] may be equal to the upper bound 1/k? in (2.2.2).

Example 2.3.2. Let the distribution of the random variable X be determined by

1/8 ifw=—1,
fx(@)=4¢6/8 ifz=0,
1/8 ifz=1

In this context, it will be shown that Chevishev inequality becomes an equality when k£ = 2. To

achieve this goal, note that

1 6 1
=FX|=-1-4+0-+1-=0
5% [X] g Tog+15=0,
whereas
1 6 1 2 1
EXY = (-1 +0°-+(1)* - =2 =-
X7 = (1?5 + 05+ ()5 =S = 7
and then

7% = BX?] - (BIX)? = 5,

Therefore, Chebishev inequality with k = 2 yields that

1 1 1
PllX|>1]=P||X-0>2]( = =PllX — > < ==
112 11 =P |1x =01 22 (3 )] = PIX - x| 2 bl < 5 = 1.

since

PX|>1]=P[X =1+ P[X =—1]=1/8+1/8 = 1/4,

it follows that equality holds in Chebishev inequality with k£ = 2. ]



2.4. Conditions for Equality: I

The examples en the previous section naturally leads to the following question: When does the
equality occur in Chebishev inequality? In this section necessary and sufficient conditions on the
distribution of a random variable X are stated so that equality holds in the basic relations (2.2.1)

and (2.2.2). The analysis starts with Markov inequality.

Theorem 2.4.1. Let X be a random variable such that E[|X|*] < co where a > 0. Given t > 0, the
following conditions (i) and (ii) are equivalent:

: Ef1X1]
6) Plx| > 4 = ZLA0

(ii) With probability 1, | X| attains just the values 0 and ¢ , that is, P[|X| =]+ P[X =0] = 1.
The proof of this theorem is based on the following auxiliary result.

Lemma 2.4.1. For a given random variable X

X>0 and E[X|=0=PX =0 =1.

Proof. Suppose that X > 0 and E[X] = 0. In this case X = |X]|, since X > 0, and given n > 0,
Markov inequality yields that

EX] 0 _
P[X21/n]§1/7n_1/7n_0'

Thus, from [X > 0] = J,—,[X > 1/n] it follows that

P[X>0]:§:P[X21/n]=§:0:0,

so that P[X < 0] =1 and then, recalling that X > 0, it follows that P[X = 0] = 1. O

Proof of Theorem 2.4.1. (i) = (ii): Suppose that

E[X1]
t(l

PlIX| > t] = ; (2.4.1)

where a and t are positive real numbers. Note that

[X|* = [XJUX] > ] + (X[ > [X]) > | XX >8] > ¢ T]]X] > ¢,
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Using that the expectation operator is monotone, it follows that

E[X]%]

E[X|I[|X] > t]] + E[[ X|*I[t > | X]]

Y

E[X|*I[IX] > t]]

Y

t*EI[|X] > 1]

t*PlIX] = 1]

where the relation F[I[|X| > t]] = P[|X| > t] was used to set the last equality. Since E[|X|?] =
t*P[|X > t], by (2.4.1), the extreme terms in the the above display are equal, and then all of the

terms coincide with ¢t P[|X| > t]. Hence,

t*PlIX] > t] = E[X]|]

E[X|I[|X] = ] + E[IX|*I[t > [X]]

E[IX[*T|X| > 1] (2.4.2)
— tB[I]X] > 1]
= t°P[|X| > 1.

The third equality in this display, which is given by
E[|IX|“I[[X] = t]] + B[ X|*I[t > |X]] = E[|X|*I[|X] =],

is equivalent to E[|X|*I[t > |X]] = 0. From this point, applying Lemma 2.4.1 with | X|*I[t > | X|]
instead of X, it follows that
P|X|*I[t > |X]|]=0] =1. (2.4.3)

Observe now that |X|?I[t > |X]|] = 0 is equivalent to |X| = 0 or I[t > |X|] = 0, and that
It > |X|] = 0 means that the relation ¢ > |X| does not occur, and in that case t < |X| holds.
Therefore,
X[*1[t > [X[] =0 <= |X| =0ort<|X]
so that
IX | Tt > X[ = 0] = [|X] = 0] U [t < |X]]. (2.4.4)
To continue, note that (2.4.3) implies that P[A] = P[AN[|X|*I[t > |X]|] = 0]] for every event A;
applying this equality with the event A = [t > | X]|], via the previous display it follows that
Pt > |X[] = P[[t > [X|] 0 [|X]*I[t > [X]} = 0]]
= Pllt > | X[ n{|X] =0 u[t < |X[]}]
= Pt > |X|]n|X] = 0]} U {[t > [X|] N [t < [X[]}];

Since [t > | X||N[t <|X|] =0 and [t > |X]|]N[|X]| = 0] = [|X]| = 0], the above display leads to

Plt > |X|] = P[|X]| = 0. (2.4.5)
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Next, the fourth equality in (2.4.2) states that E[| X |*I[|X| > t]] = t*E[I[|X| > t]], so that
E[( X" —9)I[|X] = ] = 0.
Since the random variable (|X|* — t*)I[|X| > t] is nonnegative, from Lemma 2.4.1 it follows that
P[(|X|* —t)I[|X]| >t] =0] = 1. (2.4.6)
Now, observe that (| X|* —¢t*)I[|X| > t] = 0 is equivalent to
(X" =19 =0 or I|X| =0

since (|X|* —t*) = 0 is equivalent to |X| = ¢ and I[|X| > t] = 0 means that the event [|X]| < ]

occurs, it follows that
(IX] =t UlIX] <t] = [(1X]* = t)[X]| = t] = 0].

On the other hand, note that (2.4.6) implies that P[A] = P[AN[(|X|* —t*)I[|X| > ¢] = 0]] for every
event A. Using this equality with the event [|X| > ¢] instead of A, via the above display it follows

that
PIX| 2 t] = P[[|X] = t] n [(|X]* = t*)I[|X]| = t] = 0]]

= PlIIX] = ] n{{[X] = U [IX] < ]3]
= PRIX| = a0 [|X] = ]y U{[IX] = ¢] 0 [|X] < £]}];
hence, observing that [|X| > ¢t|N[|X| =1t] = [|X]| =¢t] and [|X| > ] N [|X]| < t] = 0, it follows that
PIX| > 1] = P[IX] =1].
Combining this equality with (2.4.5) it follows that

PIIX| = 1] + P[[X] = 0 = P[IX| > ] + P[t > | X[ = 1,

which is property (ii).

(ii) = (i): Suppose that P[|X|=t] + P[X = 0] = 1. In this case P[|X| > t] = P[|X| =t] and

E[|X]*] = 0"P[|X] = 0] + t*P[|X] = #] = t* P[|X]| = {] = " P[|X| > 1],

E[IX|]

and then P[|X| =1t] = m

Remark 2.4.1. Theorem 2.4.1 states that the equality occurs in Markov inequality just in the very

special case that the distribution of |X| is concentrated on two points, namely 0 and ¢ > 0. For
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instance, suppose that X ~ Bernoulli(p), so that P[X = 1] =p =1— P[X = 0]. In this case, the
distribution of |X| is concentrated on 0 and 1, and then , P[|X]| > 1] = E[|X|*]/1* = E[|X|*] holds
for every a > 0, but P[|X| > t] < E[|X|*]/t* for every ¢ # 1 and a > 0. Next, define Y = X + 1
so that the distribution of Y is concentrated on the points 1 and 2. In this case, it follows form
Theorem 2.4.1 that P[Y > t] < E[|Y|%]/t* for every t,a > 0, that is, the strict inequality occurs in

(2.4.1); the reason is that Y is concentrated on two points which are nonull. a

2.5. Conditions for Equality: II

In this section Theorem 2.4.1 will be used to determine necessary and sufficient conditions so that

equality holds in Chebishev inequality.

Theorem 2.5.1. Let X be a random variable with finite mean and variance py and 0% > 0,

respectively. For a positive real number k, the following conditions (i) and (ii) are equivalent.
1
(i) The equality P[|X — pux| > kox] = W holds for some k > 1;

(ii) There exist a,b € IR such that a < b and

PIX=a]=P[X=0b=p>0 and P[X:a;b}:1—2p; (2.5.1)

1
(iii) For exactly one k > 0, the equality P[|X — px| > kox] = = holds.

Proof. Let X* be the standardized version of X, that is,

X _
X =B (2.5.2)
ox
so that )
X _
B[X*[?) = B (‘”‘) ] =
ox
and

|X*,ux‘ > koxy <— |X*| > k.

(i) = (ii): Suppose that P[|X — ux| > kox] = 1/k? and note that the two previous displays yield
that
P(IX*| > k] = 1/k* = B[IX"["]/k*.

From this point, an application of Theorem 2.4.1 yields that the distribution of |X*| is supported
on the values 0 and k, that is,

1= P[X* = 0]+ P[|X*| = k.
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Via (2.5.2) it follows that X* = 0 if and only if X = ux whereas | X*| = k is equivalent to
|X — ux| = kox, that is, X = ux + kox or X = ux — kox. Combining these relations with (2.5.2)
it follows that that

1=P[X —px =0]+ P[|X — px| = kox]

(2.5.3)
=P[X = px]+ PX = px +kox| + P[X = px — kox]
Setting
a=pux —kox and b=pux +kox, so that uxza;b,
(2.5.3) leads to
1=P[X =a]+ P[X =b+ P[X = (a+)/2]. (2.5.4)
Observe now that
a+b
B = KX
= B[X]
a+b
=aP[X =a]+bP[X =b]+ (1 — P[X =a] — Plx =1]) )
a—2b b—a a+b
= P[X =a]+ 5 P[X =b)+ 5
It follows that 0 = JP[X =al + b- aP[X = b], that is, (b —a)P[X =a| = (b—a)P[X =];

and then (2.5.4) immediately implies that P[X = (a 4+ b)/2] = 1 — 2p; observing that p > 0, since
otherwise P[X = (a+b)/2] =1 and then ox = 0, assertion (ii) follows.
(ii) = (iii): Suppose that (2.5.1) holds and note that

ux = E[X]=P[X =ala+ P[X =bb+ P[X =(a+10)/2](a+b)/2

=pa+pb+ (1 —2p)(a+b)/2

= (a+b)/2
and
ok = E[(X — px)?]

= P[X = al(a — px)* + P[X = b])(b — px)* + P[X = (a+b)/2)(nx — (a +1)/2)

=pla—(a+0)/2)* +p(b— (a+1b)/2)*

= p(b—a)?/2;
hence

ox = /2(b—a)
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Now set

1 1 /p b—a
k=4 o so that kox om 2(b a) 5

Since the distribution of X is concentrated on {a, b, (a+b)/2 = px}, it follows that, with probability
L
(1X —px| 2 kox =(b—a)/2] = [X =a] U[X =],

whereas
o [[X=au[X =1, ifk<Ek
X — >k 7[ ’ v )
X = px| 2 kox] {@, i k> k
Hence,
1
P[|X—,uX|ZkUX]ZP[Xza}—&-P[X:b}:2p:ﬁ,
and 1
) PIX =a]+ P[X =b]=2p =15 < =, if k <k,
PIX —px| 2 Fox] =4 B
O<?, if k> k.

These two last displays show that the equality P[|X — ux| > tox] = 1/t occurs just for the single
value t = k, establishing (iii).

(iii) = (i): This part is clear. O

Remark 2.5.1. Note that the conclusion of Theorem 2.5.1 can be summarized as follows: Equality

in (2.2.2) occurs just when the following two conditions are satisfied:
(i) The distribution of X must be concentrated on three points, a, b and the midpoint (a + b)/2.
(ii) Points a and b are attained with the same probability, say p.

Under these conditions equality occurs in (2.2.2) only if k = 1/1/2p. 0O

Example 2.5.1. (a) In the three cases considered in Example 2.3.1, the distribution of X is not
concentrated on a set of three elements, so that the strict inequality must always occur in (2.2.2), a

fact that was confirmed by direct calculations.

(b) Consider a random variable X ~ Bernoulli(p). In this case, the distribution of X is supported
on the three points @ = 0,b = 1 and 1/2 = (a + b)/2, so that requirement (i) in Remark 2.5.1 is
satisfied; in fact, the distribution is supported on the two points 0 and 1, but 1/2 can be safely
included in the support set. If p # 1/2, then P[X = 1] = p # P[X = 0] = 1 — p, and then

requirement (ii) in the above Remark is not fulfilled, so that P[|X — ux| > kox]| < 1/k? for every
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k > 0. On the other hand, when p = 1/2, then P[X = 1] = P[X = 0] = 1/2 = p and requirement
(ii) in Remark 2.5.1 is satisfied, so that P[|X — ux| > kox] = 1/k? occurs when k = 1/4/2p = 1,
whereas P[|X — ux| > kox] < 1/k?* for every positive k # 1. ]
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Chapter 3

Convergence of Random Variables

3.1. Introduction

In this chapter two ideas of convergence of random variables are discussed, and the relation between
these two concepts is studied. The presentation starts introducing the notion of convergence in
probability in Section 2, which is illustrated via a detailed example. Next, in Section 3 the notion of
convergence in the mean is formulated, and it is shown that this idea is stronger than convergence in
probability, that is, it is proved that, if {X,,} converges in the mean to the random variable X, then
{X,} also converges to X in probability. However, an example is used to show that the converse of
this result is not true, so that the ideas of convergence in probability and convergence in the mean
are not equivalent notions. The presentation continues in Section 4 with the (weak) law of large
numbers, which can be described as follows: Given a sequence of X7, X5, X3, ... of independent and
identically distributed random variables with finite mean and variance, then the average Y,, of the
first n observations X1, Xo,..., X, converges in probability to the population mean. Finally, the
exposition concludes in Section 5 with a discussion about an important problem in survey sampling,
namely determining the sample size required to achieve certain precision/confidence combination.
All of the results presented below are applications of Markov and Chebichev inequalities studied in

Chapter 2.

3.2. Convergence in Probability

In this section the notion of convergence in probability for random variables is formulated. Intu-

itively, given a random variable X, a sequence {X,} of random variables converges to X if the
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difference between X, and X becomes arbitrarily small with high probability whenever n is large

enough.

Definition 3.2.1. Let X and X,,,n =1,2,3,..., be random variables defined on the same probability
space. The sequence {X,,} converges in probability to X if

lim P[|X, —X|>¢]=0 forevery e > 0. (3.2.1)

n— o0
The notation

X, 5 X (3.2.2)
will be used to indicate that {X,,} converges in probability to X.
Note that in the above definition it is sufficient to require that (3.2.1) occurs for each ¢ small enough,
say € € (0,1) or, more generally, € € (0,0) where § > 0 is arbitrary. As already noted, (3.2.1) states

that, with a probability as near to 1 as desired, the difference between X,, and X will be less than

any positive amount e prescribed beforehand if n is large enough.

Example 3.2.1. (i) Let X be a random variable, and for each n define X, as follows:

X, ifX<n
Xn_{()7 if X >n

Thus, | X — X,,| = 0 when X < n, so that, for every € > 0,
X — X,| >¢] C[X >n]

and then P[|X — X,,| >¢] < P[X >n]=1— Fx(n) — 0 as n — oo, and it follows that X, 5 X.

(ii) Let X1, Xo, X3, . . . be independent and identically distributed random variables with distribution
U(0,1) (the uniform distribution (0,1)). Set

Yn = max{Xl,Xg, e ,Xn}
It will be shown that {Y;,} converges in probability to the constant random variable equal to 1:
Y, —1. (3.2.3)

To achieve this goal observe that, with probability 1, the values of Y,, belong to (0,1) and then, for
every € € (0,1),

1Y, =1 >el=[Yp<l-el=[X;<1—¢, i=12,...,n],
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so that
PllY,—1>¢]|=P[X;<1-¢,i=1,2,...,n]

=P[X; <1—¢]P[X3<1—¢]---P[X, <1—¢]
=(1-¢e)(1—-¢)---(1—¢)
=(1-¢)"

and it follows that P[|Y,, — 1| > ¢] — 0 as n — oo, establishing (3.2.3).

(iii) Let X7, X5, X3,... be a sequence of independent and identically distributed random variables
with mean p and variance o2. It will be proved that
n

2 P
Y= —— Six; B
n(nJrl);Z a

To achieve this goal observe that

whereas

E[[(Y,, — p)?] = Var[V,] = Var

() st o

Zi202 2 4 n(n—|—1)(2n—|—1) 52 dn + 2
n—i—l n2(n+1)2 6 3n(n+1)

and it follows that
lim E[(Y, — p)*] =0.

n—oo
Therefore, an application of Markov inequality yields that, for every € > 0,

E[(Y, — p)?]

PlIYa — ] > ¢ < =

—0 asn — oo,

and then Y, RN L. O
3.3. Convergence in the Mean
In this section Markov inequality will be used to provide a sufficient criterion for convergence in

probability. The proof of the following result extends the argument used to analyze Example 3.2.1(iii)

in the previous section.
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Lemma 3.3.1. Let X and X,,,n = 1,2,3,..., be random variables defined on the same probability

space, and suppose that, for some a > 0,
E[|X, - X|*] =0 asn — oo. (3.3.1)

In this case,

X,— X.

Proof. Given £ > 0 observe that Markov inequality yields that

B[l Xy — X|]

P[|IX, — X|>¢] <
Ea

—0 asn— oo,

so that XnLX. O

When (3.3.1) holds, the sequence {X,,} converges to X in the mean of order a. Thus, the main

conclusion of the lemma states that

‘if {X,,} converges to X in the mean of order a > 0,
(3.3.2)
then {X,,} converges to X in probability’.

The most frequent application of the above lemmas occurs when X is a constant .

Example 3.3.1. Let X7, X5, X3, ... be a sequence of independent and identically distributed random
variables with mean u and variance o2. In this context, it will be verified that

6 L P
Y,:= § i2X, — .
n(n+1)2n+ 1) &= a

To establish this conclusion observe that

6 n \ B n
EYa] = n(n+1)(2n + 1) ;z EXi] = n(n + 2n+1 z::
B 6 S 6 nn+1)2n+1)
_Mn(n+l)(2n+1) ;Z _Mn(n+1)(2n+1) 6 —

Next, it will be shown that {Y;,} converges to p in the mean of order 2, that is,
E[/Y, —p)? =0 asn— occ.

To achieve this goal, note that

E[[(Yn — p)?] = Var[Y,,] = Var

6 .
nn+1)2n+1) ZZQXi]

:(n( — 2n+1) ZVar [i2X;] (3.3.3)
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To continue, a bound for ", i* will be obtained using the integral fol 2% dz. Note that

Combining this relation with the inequality n(n + 1)(2n + 1) > n?, it follows that

6 ‘X, 6\>6 . 216
<(=2) 2pp =22
(n(n+1)(2n—|—1)> ;z - <n3) 5" 5n

and, via (3.3.3) it follows that E[(Y,, — u)?] < 216/(5n) — 0. Therefore, an application of Lemma

3.3.1 with p and the sequence {Y,} instead of X and {X,}, respectively, and a = 2 yields that
Y, N L 0O

After a glance at (3.3.2), the following question naturally arises:

Is it true that if {X,,} converges in probability to X, then

{X,} converges to X in the mean of some order a > 07

It will be shown in the example below that the answer to this question is negative.

Example 3.3.2. (i) Consider the following function

0—1

1) = oo

x>e, flx)=0 x<e,

where 6 > 1.

(i) It will be verified that f(z) is a density function. To this end, observe that f(z) > 0 for every
z € IR, and

/Rf(ac) dx = /:O f(z)dx = /:O J:li)g_(;)adw' (3.3.4)
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To compute the right-hand side, observe that , for x > e,

[ 1og(@)! "] = ~(1— ) log(a) "+ log(x)

dz
1 1
—-1)— =
( )log(a:)9 x
0—1
~ zlog(x)? /(@)
Thus, —log(x)'~% = —log(x)'~Y is an antiderivative of f(x) on the interval [e, 00), and then (3.3.4)
yields that
[ t@is= [ f@yds
R e
— —log(a) [,

= lim [—log(b)'~? — (—log(e)' 7]
b—oo

— i [ 1-6 :

= blggo [—log(b)' =" +1];

on the other hand, since log(h) — oo as b — oo, and 1 — 6 < 0, it follows that lim_, ., log(b)* ¢ = 0,

and then the above display yields that fR f(z)dxz = 1. Hence, f(-) is a density function.
(ii) Let X be a random variable with density f(z), and set

X, if X<n
X"_{O, if X >n’

Show that
X,—5X but E[|X,— X|"] 4 0asn— oco. (3.3.5)

To achieve this goal, let € > 0 and observe that | X, — X| > ¢ <= X > n, so that

Pl|X,—-X|>¢e]=P[X >n|=1—-PX<n]—0 asn— oo,

and then
X, 5 X. (3.3.6)
On the other hand, for each a > 0
o J X% if X>n
X = X" = {0, if X <n,
so that -
E[X, - X|* = / % f(x)dx
n
e 0—1
= ¢ 3.3.7
I (337)

> 1
= ——d
/n zt=log(z)? v
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To continue, recall that log(z) increases more slowly than any positive power of z, that is,

0 as xz — oo for each b > 0, and then

log(z)? _ <log(x)

—0 asx — oo.
T ra/f

Therefore, there exists IV such that

1 0
n>N:>M<1z>log(x)9<x“
xa

= ' log(x)? < x1 72"

= ' %log(z)? < .

1
Combining this relation with (3.3.7), it follows that 7 > — when n > N, so that

xl=¢log(x) x

o0 1 0 q
n>N:>E[|Xn—X|“]:/ ﬁdxz/ — dx = o0,
n o' log(z) n T

and (3.3.5) follows combining this display with (3.3.6). O

3.4. Weak Law of Large Numbers

The most important application of the idea of convergence in probability occurs when X, is the
average of a sample from a given population, and X is a constant random variable equal to the
population mean. The following result, which is known as the weak law of large numbers, states
that if the sample size n is large enough, then for each € > 0 the probability of observing that the
sample mean X, differs from the sample population ; by more than € is negligible, that is, goes to

Zero as n increases.

Theorem 3.4.1. Let X7, X5, X3,... be independent and identically distributed random variables,
and suppose that their common distribution has finite mean p and variance o2 € (0, 00). Define the

sample mean of the first n observations by

_ X+ Xo+--+ X,
X .- 1+ X2+ + '

-

In this case

PlX, —pul>e <L, (3.4.1)

and then
X, S (3.4.2)
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Proof. Observe that
2

Var [X,] = E[(X, - )] = =

From this point, Chebishev inequality with k = ¢/4/Var [yn] = ey/n/o yields that

Pl —pl 2 e = P[Xy —l 2 hog | < 5 = M = T

2

establishing (3.4.1); since :2— — 0, this last display yields that P[|X, — u| > ¢] — 0, so that
n

X, 0. 0

Example 3.4.1. (i) Suppose that X;, Xs,... are independent and identically distributed random
variables with P(A) distribution. In this case the population mean and variance are given by is

f=Xand 02 = \. Thus, X, — A.

(ii) Suppose that X7, Xo, ... are independent and identically distributed random variables with £())
distribution (exponential distribution with density Ae=** for > 0.) . In this case the population

mean and variance are given by is g = 1/X and 02 = 1/, so that X,, REGY

(iii) Let X4, Xo,... be independent and identically distributed random variables whose common
distribution has finite fourth moment and, as usual, let ¢ and o2 stand for the population mean and
variance, respectively. Now, consider the following version of the sample variance based on the first

n observations:

1 —
~2 2
== X, — X, 3.4.3
ST ICERS (3:43)
It will be shown that
2252 (3.4.4)
To achieve this goal, note that
I - 1 « -
§2 = - > (X - X,)? = - S (X = p)? = (X — ). (3.4.5)
i=1 i=1

and observe that following facts (a) and (b):

(a) The random variables (X; — )2, (X2 — p)?, (X3 — p)?, ... are independent with the same distri-
bution. Their common expectation is E[(X; — u)?] = 02, whereas their common variance is finite,
since Var [(X; — p)?] < E[{(X; — p)?}*] < oo, where the last inequality stems from the condition
E[X}] < oo. Therefore, the law of large numbers in Theorem 3.4.1 yields that

1 n
O SN
n

=1
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(b) It will be shown that
(X0 — 1> 0.

To this end, let € > 0 and observe that

P([(Xp = p)* = 0] > e] = P[(X0 — p)* > €]

=P[| X, —u|l>Ve] =0 asn — 0o

where the convergence is due to the fact that X,, — u, by Theorem 3.4.1. Next, use (3.4.5) to obtain

1 n o
|57 — 0% > ¢ = (nZ(Xi—M)2—(Xn—M)2>—02 >e
1 2 - 2
= HZ o | = (Xn—p)|>¢

=1
(Xi —p)? =
=1
(X; —p)? —o?
1

SRS

so that

132 — 02 > €] C

o

s3> 5] v [ 5]

i=1

and then

1 € - €
2 2 < 1 2 2o & —_2 s &l
P[|s; —0°| >¢] <P - ;:1()(Z e 5 +P [(Xn w)? > }

2

Letting n go to oo, properties (a) and (b) above yield that the two terms in the right-hand side of
this display converge to 0 as n — oo, so that P[|32 — 02| > €] — 0, establishing (3.4.4). O

If W, i)a, where a is a constant, the it is said that W,, estimates a consistently. Thus, the
law of large numbers in Theorem 3.4.1 states that X, estimates p consistently, or that {X,} is a
consistent sequence of estimators of i, whereas part (iii) in Example 3.4.1 states that 32 estimates

2

the population variance o consistently.

3.5. Sample Size in a Survey

The ideas studied so far will be now used to study a basic the problem in the design of a sampling
survey, namely determining the size of the sample to achieve a desired precision/confidence goal.
Suppose that it is required to approximate p with an error of at most € > 0 (this number e represents
the precision). Of course, when the observed data involve randomness, generally no interesting
assertion can be made with complete certainty, but usually there exists the possibility of making

an incorrect statement based on the observations. Thus, the question is how to guarantee that the
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difference between v and the approximation X, does not exceed € with ‘high probability’ say -,

which is close to 1 (this number + is the confidence level). Thus, the problem is

e To determine a sample size n such that P[|X,, — u| <] > ~.
This problem can be studied using (3.4.1). First, note that P[|X,, — u| < ¢] >~ is equivalent to
PlIX, —pl>el <1—7
o2
Next observe that, by (3.4.1), the above inequality holds if —— < 1—~ which yields
e2n

0.2

e2(1—7)

and any sample size n satisfying this inequality suffices to ensure that, with probability at least ~,

<n (3.5.1)

the difference | X,, — 1| does not exceed €. Note that to determine n satisfying (3.5.1) it is necessary

2

to know the population variance o, or at least an upper bound for such a figure.

(ii) Let X1, Xo,...,X,,... be random variables with Bernoulli(p) distribution (the Bernoulli dis-
tribution with parameter p € [0, 1]), so that g = p and 0® = p(1 — p). Suppose that p is unknown
and will be approximated with X,,, the sample mean based on n observations. Since o2 = p(1 — p)
depends on p, 02 is unknown and an upper bound must be determined before using (3.5.1). To find

2

an upper bound for the variance o<, set

f(p) =p(1 —p)

and recall that p € [0,1]. Now, the maximum value attained by f in [0,1] will be determined. To
this end, first note that f is differentiable everywhere, and that f'(p) = 1 — 2p = 0 has the unique
solution p = 1/2. Thus, f attains its maximum at p = 1/2 or at the extreme points 0 and 1 of its

domain. Since f(0) =0 = f(1) and f(1/2) = 1/4 it follows that the maximum of f is 1/4 and then

>p(l—p)=o°.

NG

Consequently, the inequality in (3.5.1) will be satisfied if

N V. S
4e2(1-7)  2(1-7)

Assume that it is desired to approximate p with an error at most 0.03 with confidence level 0.95, so

that v = 0.95 and € = 0.03. In this case, the above expression yields that

1
4(0.03)2(1 — 0.95)

<n

and then 5/(0.3)% = 50000/9 = 5555.5 < n. In short, a sample size of 5556 suffices to ensure that,
with probability 0.95 or more, X,, and p differ by at most 0.03. It must be observed that (3.5.1) was
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obtained from Chebishev inequality, which usually is not sharp. Thus, it might be expected that
smaller values of n will be sufficient to ensure the desired maximum error with the given confidence
level. In practice, samples with size about 1200 are taken and it is ensured that, with confidence 0.95
the difference between p and X,, does not exceed 0.03. The method used to obtain this ‘reduced’

value of n involves the central limit theorem and will be discussed in the next chapter.
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Chapter 4

Asymptotic Normality

4.1. Introduction

Throughout the remainder, X7, X5, X3, ... is a sequence of independent and identically distributed
random vectors whose common distribution has finite moment of order two, at least. This condition
is naturally satisfied in sampling theory where the underlying population is a finite set. However,
in that context, the exact distribution of the estimators of such quantities as the population total
or average is impossible to determine, since the whole set values of the study variable are not
known. The material presented below is extremely helpful in that context, since under minimal
conditions, the normal distribution can be used to approximate the exact (but unknown) distribution
of the statistic under consideration, result that is discussed in Section 2. The approximation result
is also relevant to determine the a sample size, which is generally substantially smaller that the
one obtained using Chebishev inequality, but allows to achieve a desired precision with a given
confidence level, a topic that is presented in Section 3. Next, in Section 4 it is shown that asymptotic
normality is preserved under the application of smooth (differentiable) functions, result that is
illustrated in Section 5 determining the limit distribution of the coefficient of variation and a risk
ratio, and the exposition concludes in Section 6 with some examples concerning variance stabilizing
transformations, that is, functions that when applied to the relevant statistic have the effect that

the variance of the asymptotic distribution is constant.

4.2. Central Limit Theorem
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The law of large numbers reveals a fundamental property of the sample mean X ,,, namely, it comes
closer to the population mean y as n increases, so that X,, — u is ‘small’ if n is large enough. Recall

now that, for a sample of size n from a population with finite variance o2, the variance of X,, is

02 /n, and the standardized sample mean for n observations X1, Xo, ..., X,, is given by
- Xp-— X, —
X = P —n s (4.2.1)
VoZ/n o

note that Y; is obtained multiplying the ‘small’ quantity X, — u by \/n/o, which is a ‘large’ figure.
The following classical Central Limit Theorem shows that y/n/o acts as ‘a magnifying glass’ allowing
to observe the difference in X,, — iz in detail. Essentially, such a result establishes that, for ‘any’ set
A C IR, the probability that the standardized mean Y; belongs to a set A can be approximated by
the probability that Z € A, where Z is a random variable with the standard normal distribution.

Theorem 4.2.1. Let X, X5, X3,... be independent and identically distributed random variables

with finite mean p and variance o2 € (0,00). In this case, , for every interval A C R
P[X, € Al » P[Z € A], where Z~N(0,1);

more explicitly,

lim P[X, € Al =41,——e */?dz. (4.2.2)

n— oo 2

A proof of this result can be found in Dudewicz and Mishra (1988), or Ash (2000).

Remark 4.2.1. Two alternative notations are used to indicate that (4.2.2) holds:

X427 where Z~N(0,1),

(which is red as ‘X, converges in distribution to Z’), or
X, -5 N(0,1), (4.2.3)

which is red as ‘X, converges to the N'(0,1) distribution’.

(ii) Instead of analyzing the distribution of Y;, frequently it is more convenient to study /n(X,, —
) = UY: Suppose that (4.2.2) holds, and let A = (a,b) a given interval, In this case,
PIVi(Xn — ) € A] = PlVa(X — 1) € (a,b)]
Xn—
=P vttt e (afo,b)0)
o

= P[X,, € (a/o,b])]
b/o 1

alo /271'

— 4.1 e %2 dy
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and using the change of variable z = y/o in the last integral it follows that

N ]. 2 2
PlVn(X, —p) € Al = 415 ——e v /R gy
" Jorg?

2mo
Therefore,
PlVn(X, —u) € A] = P[W € (a,b)] = P[W € 4], where W ~ N(0,0?%)

and the following notation is used for this convergence:

V(X — p) ~5 W where W ~ N(0,02),

or
Vi(Xn — 1) 5 N(0,02). (4.2.4)
Note that this argument shows that
XL N0,1) <= Va(Xn — 1) — N(0,02). 0

Example 4.2.1. (i) Suppose that X7, X5, X3, ... is a sequence of independent random variables with

common distribution P(\) (the Poisson distribution with parameter \). In this case p = A = 02,
and then /(X — A) - A(0, \).

(ii) If X1, X9, X3,... is a sequence of independent and identically distributed with common distri-
bution Bernoulli(p). In this case u = p and p(1 — p) = o%. Hence, /n(X,, — p) 45 N(0, p(1 = p)).
O

The following extension of Theorem 4.2.1 to the multivariate case is a most important result.

Theorem 4.2.2. [Multivariate Central Limit Theorem.] Let X = (X1, X2,...,Xk)" be a random

vector with mean p and variance matrix M, that is,
p= (W, p® Y = (B[X,], E[Xa), ..., E[X4])

M = [m”] = Cov (XZ,X]) .

Suppose that X, X5, X3, ..., is a sequence of independent and identically distributed random vec-

tors with the same distribution as X. In this case, given a region A C R”,

Va[(X, —p) € Al = 4.14 —XMTx/2 gy (4.2.5)

@m)72[M|
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where X,, = (X1 + X5+ -+ X,,)/n is the sample mean of the first n observation vectors.
The notation
Vi X — pl =5 N3 (0, M) (4.2.6)

will be used to indicate that (4.2.5) holds.
4.3. Sample Size

Theorem 4.2.1 is a extremely important result in statistics. It is quite general, in the sense that
convergence (4.2.2) occurs for any distribution with finite mean and variance. The central limit
theorem can be used to analyze the problem of determining the necessary sample size to achieve a
specified precision with a given confidence level. As it is discussed below, the bounds for the sample

size will be sharper than the ones obtained via Chebishev inequality.

e Suppose that it is required to approximate p with an error of at most € > 0 and a confidence level
at least v € (0,1), so that
PIX, —ul <€l = 7. (4.3.1)

The problem is to determine a sample size n such that this relation is satsified.

To begin with observe that

P[|Xn—u<s]:pH\/ﬁ(Xn—/~t)’< \{‘ﬁe}

(4.3.2)

where the approximation is based on Theorem 4.2.1 and Z has the standard normal distribution.

Next, let z, be the (right-)percentil of Z of order «, so that P[Z > z,| = «, and then
Pl|Z] < zo) =1 — 2.

Selecting « in such a way that 1 — 2a. = «, that is, « = (1 — v)/2 it follows that
PllZ] < 20— 2] = -

Combining this equality with (4.3.2) it follows that

Pl X, —pl>el~y if vne
ag

R Z(1-v)/2;

and direct calculations solving the above approximation for n lead to

0.2

n~ g—zzf‘l_wg. (4.3.3)
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and any sample size n satisfying this relation suffices to ensure that | X,, — u| does not exceed & with

an approximate probability .

Comparing the above expression with relation (3.5.1) obtained from Chebishev inequality, note that
the right hand side of (4.3.3) is obtained from (3.5.1) replacing ﬁ by 2(2177)/2. For instance,
consider the case v = 0.95, and then 1/(1 — ) = 20, whereas z(;_+)/2 = 2o.025 = 1.959964,
and then 2(21_7)/2 = 3.841459, so that the size n obtained from Chebishev inequality in (3.5.1) is
20/3.841459 =~ 5.2 times the value of n obtained form the approximation of the central limit theorem.
As a specific illustration, consider the problem of estimating the parameter of the Bernoulli(p)
distribution. Suppose that it is desired to estimate p with an error at most ¢ = 0.03 with probability
~v = 0.95, In this case (4.3.3) yields that

o,

nR 5 H1-0.05)/2 = 1067.072,

where the unknown value of 02 was replaced by its upper bound 1/4. This relation states that about
1110 observations are sufficient to ensure that the difference between X, and p will be less than
0.03 with approximate probability 0.95. Note that, in contrast with (3.5.1), the expression (4.3.3)
is just an approximation for the value of the sample size n. Thus, it is natural to ask how good is
the approximation in (4.3.3). In the present case, the following recommendation has been obtained
from empirical (computational) studies: The approximation (4.3.3) is satisfactory if np > 30 and
n(l —p) > 30, that is, if

nmin{p, 1 — p} > 30.

For instance, for p = 0.3, this condition sates that n(0.03) > 30, or n > 1000, and then a sample
size of n = 1067 gives a probability near to 0.95 of observing a difference of at most 0.3 between p

and X,, when the true (but unknown) value of min{p, 1 — p} is 0.3 or larger. O

4.4. Smooth Transformation Theorem

In the section a property of a sequence of estimators { gy, } of a parametric function g(9) is introduced.
The idea is to combine the consistency of the estimators g, with the statement that, as n increases
and after normalizing the difference between the estimator and the unknown parametric quantity,
the resulting sequence is approximately normally distributed with mean ¢g(6). The formal definition

of this idea is presented below.

Definition 4.4.1. Consider a parametric function g: © — IR? defined on the parameter space © and

taking values in IR?, and for each positive integer n let g, be an estimator of g(0) based on the
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first n observations X7, Xs,..., X,,. In this case, the sequence {g,} of estimators is consistent and

asymptotically normal with mean p and variance V() if, and only, if

Vi (G0 — 9(8)] —5 N (0, V(6));

where V() is square nonnegative matrix of order d x d. In this case, V() is referred to as the

asymptotic variance of \/n [§, — g(9)].

The main objective of this section is to establish invariance property of the convergence to normality,
which can be roughly stated as follows: If a sequence of random vectors {W,,} converges to a (mul-
tivariate) normal distribution, and if g is a smooth (differentiable) function, then the transformed
sequence {g(W,)} also converges to a normal distribution. This fundamental result is formally

stated below in the following theorem.

The following result establishes that convergence to normality is not altered under the application

of differentiable transformations.

Theorem 4.4.1. Suppose that {I,,} is a sequence of k-dimensional random vectors such that
Vi Wi = ] =5 Ni(0, M)

for some nonnegative matrix M of order k x k and p € IR*. In this case, let g be a function defined
on an open set of R* containing the vector u, suppose that g takes value in R? and that g is

differentiable at p. In this case

Vi [9(W) = g(1)] -5 Ny(0, Dg (i) M Dyg(p)'),

where Dg(p) is the (matrix) derivative of g at , which has order d x k.
Note that if {W,} is asymtotically normal with mean p and variance M, this result establishes

that {g(W,)} is asymptotically normal with mean g(x) and variance Dg(u)M Dg(p)’. The following

example illustrates the transformation theorem .

Example 4.4.1. Suppose that X7, Xo, X3..., is a sequence of independent and identically distributed

random variables with mean p and variance o2 < co. The central limit theorem yields that
Vi (X — 1] -5 N (0,07) . (4.4.1)

Now, the asymptotic distribution of some transformations {g(X,,)} will be obtained by an application

of Theorem 4.4.1.
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(i) g(x) = €®. In this case, g(X,) = eXn, and observing that Dg(z) = ¢'(z) = €®, it follows that
Dg(p) = e. Hence, starting from (4.4.1), an application of Theorem 4.4.1 leads to

Vv [eXn — et i>./\/(0,6“026“) =N (0,e*0?)

(ii) g(x) = sin(z). For this function, g(X,) = sin(X,), and Dg(z) = ¢'(z) = cos(x), so that
Dg(p) = cos(u). Thus, (4.4.1), and Theorem 4.4.1 together imply that

Vi [sin(X,) — sin(u)] — N (0, cos(p) 0% cos()) = N (0, cos(p)? o)

(iii) Consider now that transformation g(x) = (e*,sin(z))’. This function transforms IR = IR' into

IR?, and its derivative Dg is the following matrix of order 2 x 1:

a, r
Dy(x) = ;i;d;n(x) Z[COZ(I)}

Therefore,

more explicitly,

Vi [(azy) = Cantn )] 8 ([0 [ e o)

(o) i W)

Example 4.4.2. Let X;, X5, X3,... be independent random variables from the Bernoulli(p) popu-
lation, where the parameter p € (0,1) is unknown. The first population moment is p, so that the
moments estimator of p is p,, = X,,. Since the population variance is 02 = p(1 —p), the central limit

theorem yields that
Vi [Xo = pl = N (0. (1~ p)
Consider now the smooth function
9(p) = arcsin(y/p),

so that
1 1

) =L arcsin =

An application of Theorem yields that
Vv/n [aresin(X,,) — arcsin(p)] = v/n [g(X,) — g(p)]
1
~5 N (0, Dg(p)p(1 — p)Dg(p)) = N (0, )

1
p(1—p)

1
)

4



34

notice that the (asymptotic) variance of the transformed mean—arcsin(X,, )—does not depend on
the value of p; this stabilizing transformation is frequently used when comparing proportions, since
an essential assumption in the analysis of variance is that the standard deviations of the different

populations being compared are the same. 0O

4.5. Coefficient of Variation and Risk Ratio

In this section Theorem 4.4.1 will be used to find the limit distribution of the coefficient of varia-
tion when that data are obtained form a normal population. Throughout the following discussion
X1,X9,X3,... are independent and identically distributed random variables with A/ (u, 02) distri-
bution. Now, recall that the sample variance

n

Sp= (Xi=Xn)?*/(n—1)

i=1
satisfies that ,

(”_0% ~xX2,. (4.5.1)
Next let Z1,Z5,...,Z,_1 be independent random variables with standard normal distribution. In

the case, since the variables Zi2 are independent with mean 1 and variance 2, the central limit

theorem yields that

m(ZIQ‘FZ%"""""\/Z;L—l)/(”_l)_1 i>./\f(0,1);

also, it is known that ZZ +Z3+---+Z2_, ~ x%_,, and using (4.5.1) it is possible to use (n—1)S2 /o?

instead of Y ZZ in the above display to obtain

2/ 92
Vn—1 S"/i'@lﬁf\/(o,l),

which is equivalent to

Vn —1[5% — o7 i>/\/'(0,2<74).

Because of the convergence /n/yv/n—1— 1 as n — oo, it follows that
Vn 182 — 02 -5 N (0,204) .
Consider now the function

g(w) =z, sothat Dg(z) = ¢'(x) = 1/[2/a).
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Via Theorem 4.4.1, the two previous displays yield that
Vi [Sn — o] = v/n [g(S}) — g(o®)]

d (4.5.2)
—“S N (0,9'(0%) (20")g'(0%)) = N (0,0%/2) .

e The coefficient of variation

CV =

Q=

is naturally estimated by

—

Ccv,, =

7

S

which is the maximum likelihood estimator as well as the moments estimator, and the present
objective is to determine its asymptotic distribution. To achieve this goal, the following the well-

known fact will be used: for the normal model X, and S, are independent random variables.

Combining this fact with (4.5.2) and the convergence v/n [X,, — y] Y (0,0?), it follows that

)] =617 ) s

Next, consider the function transforming a vector in IR? with no-null second component into the a

1 _E
g o) xo

The derivative of g is the matrix of order 1 x 2 given by

real number specified as follows:

Dy (1) = 000: 00l = 1fras =1/,

and it follows that

and then / ,
2 2
w\ |o 0 vy wo Cv
Dg(a)[o 0'2/2:|Dg(0) 71+20271+ 2
Thus, starting with (4.5.3), an application of Theorem 4.4.1 with the function g specified above
yields that

— CV2
Vi[OV, - cv] = v [g (ié") —yg (“)] iﬂ\/(o,1+2> .
Example 4.5.1. Consider samples X1, Xo,..., X, and Y1,Y5,...,Y,, of the Binomial (p;) and Binomial (p2)
populations, respectively. In health studies, each p; is interpreted as the probability if acquiring some

illness and is ‘small’, whereas the ratio
P1
r==—=
P2
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is referred as the risk ratio. The moments estimator of r» based on the two samples of size n is

and obtaining an approximation for the distribution of 7, for large samples is an interesting and im-

portant problem. Notice that \/n [X,,—p1] LN (0,p1(1 —p1)) and \/n [Y,,—p1] i>/\/(O,pQ(1 —p2)),

by the central limit theorem, and that the independence of the samples implies that

AEFEI R ) s

Now, consider the function

g(p1,p2) = log(p2/p1) = log(p2) — log(p1),

and notice that

1 1
Dg(plapQ) = (8p1g(p1ap2)a 8ng(pl7p2)) - (a ) )
P1 P2
as well as

Dotpropn) |10 Doty = =)+ (=)

and, starting with (4.5.4), an application of Theorem 4.4.1 yields that

d 1-— 1-
ﬂ_[m” _1”\[(07 101+ Pz),
n b2 P1 P2

Vi [log(#n) — log(r)] —35 A (0, L=p 11’2) .

=l >

wmmxﬂw—mmmm=ﬁ[[

that is,

b1 D2

4.6. Additional Examples

In this section more illustrations of the transformation theorem are analyzed.

Example 4.6.1. (i) Suppose that
Vi(X, = p) =5 N(0,07),

and consider the function g(x) = z2. In this case g(-) is differentiable everywhere, so that Theorem

4.4.1 implies that {g(X,)} is asymptotically normal. Since ¢'(u) = 2p, it follows that

Vn(g(X,) — g(p) = Vn(X} — 1i?)
—HN(0,g'(1)%0%) = N(0, [2u%0%) = N(0, 44%0?).
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(ii) Suppose that Y; ~ P(M\), i = 1,2, ..., are independent. In this case, E[Y;] = A = Var[Y;], and
the central limit theorem implies that

Vi(¥n — N -5 N (0, ) (4.6.1)

Now, consider the function g(z) = 2/, and observe that ¢/(z) = 1/y/z, so that [¢’(N)]? =
[1/V/A)]? = 1/), and then

VAg(Ta) - 9V) = 2V (ﬁ - ﬁ)
~5 N0, [¢(N]2A) = N (0, 1).

(4.6.2)

An interesting aspect in this example is that the asymptotic variance in (4.6.1) depends on A (fre-
quently an unknown parameter), whereas it is constant in the above convergence. The mapping

g(x) = 2/ is referred to as a variance stabilizing function for the Poisson distribution.

(iii) Suppose that Y; ~ E(X), i =1,2,..., are independent; recall the £(\) stands for the exponential
distribution with density f(x) = Ae™* for x > 0. In this case,

E[Yi] = 1/2
and
Var [Y;] = 1/)?,
and the central limit theorem implies that
Vi(v. = LX) a0 L (4.6.3)
n ) ’AQ -9

Now, the function g be given by g(z) = In(z), so that ¢’(x) = 1/, and then ¢'(n) = ¢'(1/)\) = \.
Therefore, [¢'(1)]?0? = [A\]?(1/A?) = 1, and then

Va(g(Yn) — g(1/X)) = v (In(Y,) — In(1/X))

. (4.6.4)
= N0, [g'(1/N)]?/A) = N(0, 1);

since the asymptotic variance of In(Y,,) is constant, the mapping g(x) = In(x) is a variance stabilizing

function for the exponential distribution.

(iv) Let Y; ~ Bernoulli(p),t = 1,2, ..., be independent random variables, and observe that E[Y;] = p
and Var [Y;] = p(1 — p). By the central limit theorem, it follows that

V(¥ —p) -5 N(0,p(1 — p)) (4.6.5)

Now, consider the function g(z) = 2arcsin(y/z), z € (0,1), and observe that

p/(»”f):?\/ll(w (2\1/5) B x(llfz:)
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Therefore,

and then Theorem implies that

Vn(g(Yy) — g(A) = 2¢/n (arcsinY,, — arcsin \)

) (4.6.6)
—N(0,[¢'(p)]*p(1 — p)) = N(0,1).

Thus, 2arcsin(-) is a variance stabilizing function for the Bernoulli family of distributions. O
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Chapter 5

Simple Random Sampling

5.1. Introduction

The basic problem studied in Sampling Theory consists in formulating inferences about a whole
population U using knowledge of just one part (a subset) of Y. In principle, the population is
finite, the subset of the population which is analyzed to state the inferences is called the sample and,
generally, it is required to accompany the stated conclusions about the population with an assessment
of their precision or reliability. Such a requirement can be fulfilled if the analyzed sample is chosen via
a random procedure, and this chapter introduces the basic ideas of ‘probability sampling schemes’.
The subsequent material has been organized as follows: In Section 2 the notions of population, sample
and parameter are introduced, and the basic problem in the theory of sampling is formally stated.
Next, in Section 3 two general strategies (or schemes) to select a sample are briefly described, and
they are illustrated by means of two important schemes, namely, the simple and Bernoulli strategies.
Then, the concept of sampling (probability) design is formulated in Section 4, and an alternative
implementation of the simple design is presented in Section 5. Finally, the chapter concludes in
Section 6, which concerns with two notions that will pay important roles in the study of estimation

problems, namely, the ideas of inclusion probabilities and membership indicators.
5.2. Population and Random Samples

Consider a set U with N elements, hereafter referred to as the population, whose elements are

denoted by U;, 1 =1,2,3,...,N:

U=1{Uy,Us,Us, ..., Ux}. (5.2.1)
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This set U is an abstract representation of a class of concrete objects. The elements U; are refereed
to as the units and each one of them conveys some information that is of interest to the analyst.

Such information is represented by a function
y:U — RF,
which is referred to as the study variable, and
Y, =YU), i=1,23,...,N (5.2.2)

stands for the value that the function ) associates with U;. For instance, if the population U consists
of all the oranges in a container, Y; may represent the amount of juice that can be extracted for
the i-th orange U;, whereas if the units U; are persons, Y; might be the weight of the i-th person,
or the pair (weight, age) for the i-th person. It is assumed that N, the number of elements of the
population, is known, but the function ) is unknown, so that the value Y; associated with U; can be
determined only after analyzing the unit U;. Throughout the remainder the interest focuses in two
parameters (this is the technical name for a quantity that depends on all the values Y3, Y, ..., Yy):
the population total

Y=YV1+Yo+Ys+---+Yy (5.2.3)

and the population average

Vi+Yo+Ys+---+ Yy

Y = 5.2.4).
K (52.)
The main problem considered below can be sated as follows:
To estimate the population total or average based only
(5.2.5)

on Y; = Y(U;) for U; in a subset S of the population U

This problem is important in the common situation that it is impossible, impractical or expensive
to examine all of the units in the population to determine the whole set of values Y7,Ys, ..., Yy,
and then compute exactly the value of the parameter. However, it is possible that the available

resources (time, budget) allow to examine some units U;, , Ui,, ..., U;, so that the corresponding Y-

in

values Y;,, Y; can be determined, and the problem is to obtain ‘a reasonable approximation’

oy ey Lig
of the parameter value using only the information obtained from the analyzed units. The subset of
U for which the values Y; = Y(U;) are determined is called a sample, so that the above problem can
be stated as follows:

To estimate a population parameter based on the
(5.2.6)
values Y; corresponding to units U; in a sample S.

Of course, since the parameters Y or Y are unknown, when ‘approximations’ Y or Y are proposed,

a measure of the ‘estimation error’ |Y —Y| must be provided. Such an assessment is possible only if
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the sample used in the analysis was selected via a random mechanism (Lhor, 2010). In this work, all
of the samples considered below will be obtained from U using simple random sampling, as described

below.

5.3. Simple Random Sampling

In this section a basic random sampling method is briefly described. Let n < N be the desired
sample size The simple random sampling scheme (without replacement), which is used to obtain a

sample of size n is as follows:
1. Select a member of the population using a random mechanism assigning probability 1/N to each
one of the N elements of U;

2. Remove from the population the unit selected in the previous draw and, with equal probability

1/(N — 1), select from the remaining N — 1 elements a new member of the population;

n. Remove from the population the units selected in the n — 1 draws already performed and, with

equal probability 1/(N —n + 1), select a new element from the remaining N — n + 1 units.

After these steps, a (random) sequence

S

I
S
S
s

in) (5.3.1)

is obtained, where U;, is the unit selected in the k-th draw. This is a vector of distinct units taking

values on the space
Sni={5=(u1,ug,...,un) | U, us,...,u, are different elements of U/}. (5.3.2)

The elements of S, are the ordered samples without replacement of size n and are also referred to

as the permutations of size n of the population /. From the above description it follows that

-~ 1 1 L=
PS=d=m, " v -—w-nzy °€%

that is, all of the ordered samples (permutations) of size n have the same probability of selection.
Finally, a set S is immediately determined form S forgetting the order in which the units were
selected:

S ={U;,,Us,,...,U; }. (5.3.3)

This set is a member of the family

S, = {s| s is a subset of size n of U}
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which consists of all subsets (samples) of size n of U. Since the elements of a set of size n can be

arranged into a sequence in n! forms, it follows that

PlS=s] = (17\;')71 = (}V) s€S, (5.3.4)

so that all of the (unordered) samples of size n have the same probability of selection.

Definition 5.3.1. Given a sample S as in (5.3.3), let
yj:y(Uij), j:1,2,...,7’l (535)
by the information associated to the j-th unit in the sample.

(i) The sample mean (or average) is denoted by 7 and is defined by

Yyr+y2+--+yn
" .

y:

(ii) The estimators Y and Y of the population average and total, respectively, are given by

Y=3 Y =N3 (5.3.6)

For every positive integer r < N, the indicator random variable I, = I,.(.S) of the unit U, is defined

by

1, ifU, €5,
1,(S) = {0, U 28 (5.3.7)
With this notation, a glance at (5.3.3) and (5.3.5) yields that
n N
D wi= LY
i=1 r=1
and then
N L N K NX
Y=9=-— 1.(S)Y,, Y=Ny=— I.(9)Y;. 5.3.8
ERINIC 7= L hS) (539

5.4. Mean and Variance of the Estimators

Under the simple random sampling previously introduced, in this section the expectation and vari-
ance of y will be computed. First, it will be assumed that the study variable is scalar, that is, takes

values in IR.

Theorem 5.4.1. Under the simple random sampling scheme with sample size n,

_ 1 1
E[@] = Y, and Var [?] = <7’L — N) S}Q/,
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where

N
1 _
52 = N1 EZI:(Yk -Y)? (5.4.1)

is the population variance of Y7,Y5,...,YN.

The proof of this result relies on the following lemma.

Lemma 5.4.1. Under the simple random sampling scheme with sample size n,

n
EllL] = N
n n
Var [I’I‘] = N (1 — N)
n n 1
COV(IT,It):—N (1—N) m, 'I";ét

Proof. Let S, be the family of all subsets of I with n elements, so that P[S = s] > 0 if, and only

if, s € S,; recall that
1

ol

Next, observe that I, = I,.(S) is a Bernoulli variable, that is, it attains just the values 0 and 1;

P[S=s]= 5 € Sp.

moreover, I,.(S) =1 if and only if U, € S. Since there are (11:11) subsets of S with n elements that

include U,., it follows that

s€S,:U,.€s s€S,:U,€s (n)

<JZ> B Z(JZ—D (5.4.2)

PlI.=1]= %, and then I, ~ Bernoulli(n/N).

using the identity
it follows that

Applying the well-known formulas for the mean and variance of the Bernoulli(p) distribution, it
follows that
_

B[] = & and Var[L]=— (1 - %) .

Now, let  and ¢ be two positive different integers less than or equal to N and observe that I,.(S)I;(.S)
attains just two values, 0 and 1, and that I.(S)I;(S) = 1 if, and only if, U, € S and U; € S, so that

PL(S)I,(S) = 1] = P[U, € 8,U, € 8]

= Z P[S = s]

s€S,:Ur€s,UsEs

) 1
T T

s€S,:U.€s,U€s
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To conclude, recall that there are (N _2) samples of size n containing U; and Uy, so that that

n—2

N —2
PIL(S)I,(S) = 1] = (’(LN)z) - ]GE?V_?), —

n

where the last equality is due to the relation <N) = N(Nl)) (N 2
n

), which follows applying

nn—1) \n—2
i _ n(n—1)
(5.4.2) twice. Thus, E[I.I;] = N1 and then
Cov (I, I;) = E[I.1;] — E[I,|E[L}]
_nn-1) nN
~ N(N-1) NN
-1 1
S
N\N-1 N —-1N N

and the proof is complete. 0O

Proof of Theorem 5.4.1. The argument combines the previous lemma with formula (5.3.8). Note

that
N

> I

k=1

Efjl =1 B

N
ZYkE [Ix] = ZYk f%ZYk:*
k=1

On the other hand, to compute the variance of 7 it is convenient to use the following notation,

(-2
T—N N .

Then, the conclusions of Lemma 5.4.1 yield that t

1
Var [I;] = d Cov Iy, I;) = — :
ar[Iy) =7 an ov (I, It) 1"
Therefore,
Var [g] = Var ZYka
1
zﬁVar ZIkYk
k=1
1 [N
-5 S VVar[L)+ > Y;YiCov (i, Ii)
| k=1 1<j#k<N
1 R T
_ 2
=3 VTS > ViV
| k=1 1<j#k<N

1<j#k<N

[~
1
— XYy X v
k=1
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Now observe that

N2Y2=<§:Yk>2:§; g 3 YYk_ZYk+ Y ovn

k=1 1<5,k<N 1<j#k<N
so that
Z Y; Yy = N2Y© — Z Y2
1<j£k<N
and then
r [ & 1 _—
o 2 237 2
k=1 k=1
N N 2
T V2 4 1 2 N* 2
_ﬁz’“ —1ZY]“_N—1Y
k=1 k=1
N
T N
= ey | LYY
k=1
N N )
Using the identity Z(Yk ~-Y)? = Z Y2 — NY, it follows that
k=1 k=1
N
T N =
Var[g] = ——— Y (Vi —Y)?
ar[y] nQN_l;(k )
N
N 1 -2 N 5
= ﬁ’riN 1 (Yk — Y) = E’TSY
k=1
Finally, observe that
N N n n 1 n 1 1
5o N2 0-2)-20-2)-- 4
n? n? N N n N n N
and the desired expression for Var [g] follows combining the two last displays. O

Example 5.4.1. Suppose that the study variable is a bi-dimensional vector, say

In this case, given the sample S = {U;,,U,,,...,U; } the information obtained from the unit j-th

unit in the sample is
and

The objective of this example is to determine

V = Var[z] = {
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Of course, from Theorem 5.4.1 it is known that

1 1 1 1
Var [g] = (n - N) S% and Var[z] = (n - N) S%,

where S% is as in (5.4.1) with the study variable X; instead of Y;. To determine Cov (7, T), define

the new study variable,

Wi=Yi+X;, i=12,...,N,

so that W =Y + X and

1 N
Sy = N_1 ];(Wz - W)
1 N
“N_1 Z(Yz + X — [?thYDQ
k=1
N — _ (5.4.3)
- e - Y X - X

N N
o [P Y - X 423 (4 - V(X - )
k=1 =

k=1

-
\
\

= S% + 5% + 28y x

where
R -
Syx = 3 S (Y- V)(Xi - X)
k=1
The W values obtained form the sample are w; = y; +z; , 7 =1,2,...,n, and then
w=Yy+7T

Now, Var [w] will be computed in two ways:

e Using the formula for the variance of a sum,
Var [w] = Var [y + 7] = Var [g] + Var [z] 4+ 2Cov (7, T)

e Applying Theorem 5.4.1 with the study variable W instead of Y’

Var @] = (31 - ;f) sz,

— (%) 5%+ % + 280

n

1 1\ ., (1 1\, 11
G-%)st+(G-7)st+2(5-5) Svx
1 1

= U T 27_
Var [g] + Var [z] + (n N) Sy x
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where the second equality is due to (5.4.3). Comparing the two last displays, it follows that

Cov (7,7) = (1 — 1) Sy x. (5.4.4)

n N
To conclude this section, the limit distribution of 7 will be discussed: Suppose that

N — o0, n—o0, and % — 0. (5.4.5)

This condition means that the sample and population sizes under consideration are ‘big’, but the

sample size is ‘small’ when compared with the population size.

Theorem 5.4.2. Under condition (5.4.5)

V@ —Y) -5 N(0, 52). (5.4.6)

Al ) (L[5 647

This result was used in Section 3.5 to determine the sample size to achieve a required precision with

and

a desired confidence level.
5.5. Ratio Estimator

Consider the problem of estimating the population total for the study variable ), which is given in
(5.2.3), and suppose that there is other interesting feature of the population units which is given by
the quantity X; for the unit U;. It is supposed that the total of this additional study variable, given
by

X=X1+Xo0+X3+---+ Xn,

is known. Under this condition, define

Vi = %X (5.5.1)

which is known as the ratio estimator for the total Y. The main objective of the section is to compare
the mean quadratic error of this estimator with the variance of the usual estimator Y defined in

(5.3.6). The main result is the following

Theorem 5.5.1. Under (5.4.5),

2
- Sy

~ — — .
Yl sz (%) —25xy L+ 52

EK? — V) (5.5.2)
R

E[(
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Remark 5.5.1. The above theorem provides a guide to decide which estimator Y or Yg to use when
estimating the population total Y. Of course, these comments make sense when condition (5.4.5)

holds, that is, if the sample and population sizes n and N are large, and n is small compared with

N. In this context, (5.5.2) yields that

Yy is preferred to Y <= E[(Yg —Y)? < E[(Y —Y)?]

— 2 J—
Y Y
— 5% > 5% <X> fstY§ + 5%

VY _ (7Y
QSXY§>SX <X>
So 18,7
Sx Sy 2S5y X
1CV(X)
2CV(Y)

!

!

!

PXY >

where pxy is the population correlation coefficient between x and Y, whereas CV(X) = Sx/X
and CV(Y) = Sy /Y are the coefficients of variation of X and Y, respectively. Thus, use the ratio
estimator if X and Y are ‘highly correlated’; if CV(X) and CV(Y)) are similar, a correlation larger

than 1/2 is sufficient to ensure that the ratio estimator is preferred to the usual estimator. O

The proof of Theorem 5.5.1 is somewhat technical. To begin with observe that

) 11
_ = __ 2 — __ 2( - = 2
Var M = Var [Ng] = N?Var[g] = N (n N) S2.
Thus, under (5.4.5), %Var [Y} = (1 - %) S% — S% and then
n ~ n N
Bl =) = 5 Var M ~ 2 (5.5.3)

note that, since Y is unbiased, Var [Y} coincides with the mean square error E[(Y —Y)?]. The next

step consists in determining an approximation for the mean square error of Yr. The argument relies

on the following theorem.

Theorem 5.5.2. Under 5.4.5,

) . (5.5.4)

Proof. Set
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so that
Dfe.9) = 0ufa). 08, w) = (- 4.7
Combining (5.4.7) with Theorem 4.4.1 it follows that
_ = o 9 -

\/ﬁ(f B] —f KfD %N([g] ,Df(X,Y) {Si’fy Sgé‘} Df(X,Y)’). (5.5.5)
Next, observe that

T|_ Y
(a) f |:y:| - %a

X Y
o7 5] -5

S Y 1
(¢c) Df(X,Y) = (—X2, X)’ and

(d) The variance in the right-hand side of (5.5.5) simplifies to

Thus, (5.5.5) is equivalent to

A7) ([0 [ 5 oo

which is the desired conclusion. O

Proof of Theorem 5.5.1. Note that Theorem 5.5.2 implies that

waz-5) <(]

— 2 J—
Y Y
S% <X> - ZSXY§ + 5%

) , (5.5.6)

so that .

Y Y

=[f~%
T
_ — 9 (5.5.7)
Var {X\/ﬁ <y — Yﬂ ~ S% (Y) —25xy =+ 5%
z X X

On the other hand, using that Y/X = Y/X and X = NX, it follows that

)= (o) = (2 5) =3 (3 5)



and then the above display yields that

ElVel ~Y
%E[(YR ~Y)?|=E (ﬁ(?z% - Y))2
—E (X\/ﬁ (Z - ;))2
e (25
Y

and the proof is complete.
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