EVALUACION DE 69 GENOTIPOS DE SORGO (Sorghun bicolor L.Moench) PARA GRANO.

Por:

MAURICIO MORGADO QUIÑONES

TESIS

Presentada Como Requisito Parcial Para Obtener el Titulo de:

Ingeniero Agrónomo

Especialidad Fitotecnia

Buenavista, Saltillo. Coah.

OCTUBRE,1999
EVALUACION DE 69 GENOTIPOS DE SORGO(Sorghum bicolor L Moench) PARA GRANO.

POR:

MAURICIO MORGADO QUIÑONES

TESIS ELABORADA BAJO LA SUPERVISION DEL COMITÉ PARTICULAR DE ASESORIA APROBADA COMO REQUISITO PARCIAL PARA OBTENER EL TITULO DE:

INGENIERO AGRONOMO
ESPECIALIDAD FITOTECNIA.

COMITÉ PARTICULAR:

Ing. José Luis Herrera Ayala
Asesor principal

MC. Armando Rodriguez Garcia
Asesor

MC. Luis Angel Muños Romero
Asesor

Coordinador de la División de Agronomía

M.C. Reynaldo Alonso Velasco

DEDICATORIA

A Dios:

Por iluminar el camino de mi vida y darme paciencia y fortaleza para salir adelante.

A mis padres:

Modesta Quiñones López
Julio Morgado Sánchez

Por darme la vida y todo el apoyo para realizar mis estudios profesionales, por enseñarme a salir adelante y no dejarme caer ante un obstáculo, sino luchar para conseguir lo que se quiere.

A mis hermanos:

Quienes me brindaron su apoyo en todos momentos, orientación para salir adelante y por su confianza para dejarme ser como soy con respeto y cariño: Demetrio, Erasmo, Elsa, Edith, María Esther, Jorge, Gloria, Rocío, Nolberto, Julio, Paula y Griselda.

A mi novia:

María del Carmen Magallanes Portales. Por darme confianza, apoyo y comprensión.

A mis amigos:

A todos mis compañeros de tronco común y de la especialidad por brindarme una amistad sincera y por compartir una parte de su vida a mi lado gracias: Fco. Javier, Narciso, Angel, Antonio Veliz, María del Carmen, Inés, Erika, Gabriela.

A la familia: Magallanes portales

Por brindarme todo su apoyo y sus consejos incondicionalmente.
AGRADECIMIENTOS

A la Universidad Autónoma Agraria Antonio Narro por darme cobijo durante mis estudios profesionales.

Al Ing. José Luis Herrera Ayala por la oportunidad que me brindo para la realización del presente trabajo y por su valiosa amistad.

Al Biol. MC. Armando Rodríguez García por su participación como sinodal y revisión del presente trabajo y su amistad.

Al Ing. MC. Luis Angel Muñoz Romero por su participación como sinodal y revisión del presente trabajo, así como por sus consejos y su amistad.

A la Lic. Sandra Roxana López B. Por brindarme apoyo en el mecanografiado del presente trabajo.
INDICE DE CONTENIDO

<table>
<thead>
<tr>
<th>Título</th>
<th>Pag.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dedicatoria</td>
<td>i</td>
</tr>
<tr>
<td>Agradecimientos</td>
<td>ii</td>
</tr>
<tr>
<td>Índice de Cuadros</td>
<td>iv</td>
</tr>
<tr>
<td>Introducción</td>
<td>1</td>
</tr>
<tr>
<td>Revisión de Literatura</td>
<td>4</td>
</tr>
<tr>
<td>Germoplama</td>
<td>4</td>
</tr>
<tr>
<td>Selección de Germoplasma</td>
<td>5</td>
</tr>
<tr>
<td>Diversidad genética</td>
<td>10</td>
</tr>
<tr>
<td>Tipos de colecciones recomendadas para el mejoramiento</td>
<td>13</td>
</tr>
<tr>
<td>Mejoramiento genético</td>
<td>15</td>
</tr>
<tr>
<td>Interacción Genotipo Ambiente</td>
<td>16</td>
</tr>
<tr>
<td>Materiales y Métodos</td>
<td>20</td>
</tr>
<tr>
<td>Material Genético</td>
<td>20</td>
</tr>
<tr>
<td>Ambiente de prueba</td>
<td>20</td>
</tr>
<tr>
<td>Diseño del experimento</td>
<td>22</td>
</tr>
<tr>
<td>Siembra</td>
<td>22</td>
</tr>
<tr>
<td>Toma de datos</td>
<td>22</td>
</tr>
<tr>
<td>Variables evaluadas</td>
<td>22</td>
</tr>
<tr>
<td>Análisis estadístico</td>
<td>24</td>
</tr>
<tr>
<td>Resultados y Discusiones</td>
<td>28</td>
</tr>
<tr>
<td>Conclusiones</td>
<td>40</td>
</tr>
<tr>
<td>Recomendaciones</td>
<td>41</td>
</tr>
<tr>
<td>Resumen</td>
<td>42</td>
</tr>
<tr>
<td>Bibliografía</td>
<td>44</td>
</tr>
<tr>
<td>Apéndice</td>
<td>48</td>
</tr>
</tbody>
</table>
INDICE DE CUADROS

<table>
<thead>
<tr>
<th>Cuadro</th>
<th>Pag.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Material Genético Utilizado</td>
</tr>
<tr>
<td>2</td>
<td>Esquema del Análisis de Varianza</td>
</tr>
<tr>
<td>3</td>
<td>Análisis de Varianza, Cuadrados medios, Nivel de significancia y Coeficiente de Variación para 7 características agronómicas, Determinadas en condiciones de riego Reynosa Tamaulipas</td>
</tr>
<tr>
<td>4</td>
<td>Rango y media general de 7 características evaluadas</td>
</tr>
<tr>
<td>5</td>
<td>Matriz de correlaciones Fenotípicas y nivel de significancia de características evaluadas bajo condición de riego Reynosa Tamaulipas</td>
</tr>
</tbody>
</table>
INTRODUCCION

El mejoramiento genético de las plantas depende, en gran medida, de la diversidad genética existente, de los métodos de mejoramiento a utilizar y de la capacidad del fitomejorador para explotar el potencial genético de la especie con la cual está trabajando.

El sorgo es la principal fuente de alimento para millones de personas en los trópicos semiáridos (TSA). En las áreas tropicales, el grano de sorgo es importante como alimento humano y por su utilidad forrajera. El tallo y el follaje henificado y pastura, los tallos también son usados como combustibles y material para construcción. En áreas templadas su principal uso es como forraje, excepto en China donde principalmente es usado para alimento humano House (1982). El grano de sorgo se usa en la preparación de diferentes tipos de alimentos. Además de éstos, existen sorgos dulces y palomeros que también son consumidos. Además el sorgo también es reconocido por su valor como combustible y para otros propósitos.

En los últimos años, la demanda por este alimento básico ha ido en aumento dadas a las poblaciones crecientes. Aunque el sorgo es reconocido por su versatilidad de usos, rusticidad, estabilidad de rendimiento, adaptabilidad sobre un amplio rango de culturas y climas; las condiciones edafoclimáticas adversas que prevalecen en las áreas
de cultivos de sorgo en el mundo, limitan la producción de éste. El cultivo es frecuentemente establecido en suelos pobres y bajo condiciones de temporal por pequeños agricultores que tienen pocos recursos para disponer de fertilizantes, insecticidas y otros insumos que incrementan el rendimiento. Por lo tanto, existe la necesidad de desarrollar variedades para mejorar la adaptación de cultivo en condiciones climáticas adversas de los trópicos semiáridos (TSA) del mundo.

En México el cultivo de sorgo (*Sorghum bicolor* L. Moench) se introdujo en 1944 con variedades traídas de los Estados Unidos de América. El cultivo empezó en Tamaulipas y posteriormente a otros estados de la república adquiriendo una mayor importancia, siendo uno de los cuatro principales cultivos básicos.

Los híbridos comerciales en México son generados por compañías transnacionales principalmente de origen estadounidense mientras que la participación de compañías Mexicanas es mínima.

Esto debe de ser motivo de análisis y reflexión para las instituciones relacionadas con la investigación agrícola para sacar a flote los programas de mejoramiento de sorgo y crear nuevas variedades e híbridos que se adapten a los diferentes tipos de ambientes que tiene nuestro país, para poder explotar la producción de sorgo y cubrir la demanda nacional de este cultivo.

El programa de mejoramiento de la Universidad Autónoma Agraria Antonio Narro(UAAAN) a través de varios años de investigación ha generado híbridos a nivel
experimental y sigue evaluando líneas para formar nuevos híbridos que tengan estabilidad y potencial de rendimiento. En el presente trabajo se evaluaron 69 líneas de germoplasma en Reynosa Tamaulipas con la finalidad de seleccionar las que presenten las aptitudes antes mencionadas.

OBJETIVOS:

* Probar el potencial de rendimiento de 69 genotipos de germoplasma de sorgo en el Norte de Tamaulipas bajo condición de riego.

* Determinar el potencial genético de los genotipos más sobresalientes en cuanto a características agronómicas deseables en la localidad de Reynosa Tamaulipas.

HIPÓTESIS.

Dentro del germoplasma a evaluar existen materiales para utilizarse como variedades o bien como progenitores de híbridos experimentales.
REVISION DE LITERATURA

Germoplasma

Según Creech y Reitz (1971), el germoplasma es definido como la colección de materiales de plantas, que pueden estar reunidos o no, y que sirven para investigación o como base para el mejoramiento de cultivos. La principal característica es la de ser un reservorio de genes.

Smartt (1978), menciona que los componentes más diversos del germoplasma están en los centros de dispersión primaria y que el germoplasma de los cultivos es derivado de tres fuentes principales:

a) De las especies silvestres y las formas primitivas de cultivo en los centros primarios de diversidad.

b) De las plantas migratorias de los centros secundarios de cultivos donde su diversidad puede ser aumentada.

c) De los productos de las plantas cultivadas.

De acuerdo con Smartt (1978), menciona que aún y cuando los ancestros silvestres son una fuente principal de germoplasma, su uso ha estado restringido por los siguientes factores:
- Las especies silvestres a menudo muestran más dificultad para las cruzas, y los híbridos resultantes son parcial o completamente estériles.
- Pueden tenerse dificultad con poliploides iguales y por consecuencia esterilidad.
- Es necesario el conocimiento de taxonomía, filogenia y distribución geográfica de las especies silvestres, ante de que se puedan hacer mejor uso de ellas.
- Las especies silvestres poseen una serie de características indeseables que provocan una disminución en la producción.

Banco de Germoplasma

La diversidad genética presente en los centros de orígenes se encuentran amenazadas por lo que se ha dado en llamar Erosión Genética, que no es otra cosa más que el efecto de las actividades del hombre en la composición de los cultivos. Chávez (1990), así mismo menciona que los cultivos mejorados presentan una disminución en su base genética, incrementando así su susceptibilidad a enfermedades e insectos, por lo que se hace necesario la conservación de una amplia variedad genética bajo condiciones controladas, que garantice su existencia. Estas colecciones se denominan Bancos de Germoplasma.

El Banco es una unidad dinámica que posee la mayor diversidad genética posible, expresada por un alto número de biotipos representativos de la especie y de especies afines. Siendo su función la de tener disponible para los fitomejoradores y cualquier momento, muestra de semillas que involucren un factor genético en particular o bien grupos de factores que se deseen estudiar. Chávez(1990).
Para Burton (1979), el principal uso de las colecciones germoplasmicas es el de suplementar los contenidos genéticos y el de modificar y mejorar los cultivos y sus híbridos. Menciona además que los requisitos que debe llenar un fitomejorador colector de germoplasma son los siguientes:

a) Debe saber que los cultivos presentan una o más necesidades específicas.
b) Cuidar que exista diversidad en el material que ha sido colectado y conocer tales diversidades.
c) Saber como intercambiar germoplasma con los demás fitomejoradores.
d) Tener un programa activo de colectas las cuales se lleven a cabo un sus hábitats naturales, aunque no sea posible hacer una colección sistemática de todos los lugares del mundo.
e) Debe saber escoger los sitios más idones.
f) Estudiar los manuales botánicos, especímenes de herbario y considerar todos las condiciones ecológicas de los posibles sitios de selección.
g) Asistir con científicos locales que trabajen el mismo cultivo, a los países donde las colecciones puedan tener un valor invaluable.
h) Debe tener arreglos con la aduana para introducir el germoplasma, cumpliendo con las reglas establecidas.
i) Describir el material y el sitio de colección correctamente.
j) A través de visitas a los sitios muéstrales tratar de obtener la mayor diversidad genética posible.
k) Debe coleccionar el material suficiente que le permita realizar una evaluación, un incremento, un uso y un almacenamiento.
Selección de Germoplasma

Puente (1983), Trabajando en sorgo para grano, en una evaluación de líneas perse y su estabilidad, encontró que algunas líneas mostraron bajos rendimientos y estabilidad alta; con esto indica, que los caracteres como rendimiento y estabilidad están controlados por genes independientes, por lo cual considera que se pueden combinar ambas características en un genotipo mediante cruzamiento. Además que las generaciones segregantes deben evaluarse en varias localidades y años para generar variedades que aprovechen un alto rango de ambientes.

Hallauer y Miranda (1981), Mencionan que en la selección de germoplasma, la primera fase consiste en la colección de material disponible, pudiéndose auxiliar de bancos de germoplasma ya existentes, dentro de los cuales se pueden seleccionar en base a evaluaciones del mismo, aquellos materiales que involucren los caracteres deseados y reúnan capacidad de rendimiento y adaptación en la zona ecológica donde se desea trabajar, en este caso se pueden aprovechar las observaciones de otros mejoradores. El germoplasma elegido como material genético básico para iniciar el programa, debe contener una frecuencia alta de caracteres favorables, ya que de su calidad depende el potencial de mejoramiento que pueda lograrse a través de la mejora genética.

El siguiente paso es la elección del método de mejoramiento, mismo que determinará qué logros se pueden alcanzar en cuanto al máximo potencial de material, esto debe hacerse en base a un programa de selección cíclica que permita mejorar el
nivel general del comportamiento de la(s) población(es), lo cual se conoce como selección recurrente.

La selección recurrente permite el reciclaje de una población en el cual la selección y recombinación de progenies sobresalientes incrementa la frecuencia de alelos favorables de donde en los últimos ciclos de selección se pueden obtener progenies superiores, por lo tanto unos de los principales objetivos de la selección es conjuntar tales alelos favorables ciclo tras ciclo, bajo una presión de selección constante. El éxito relativo depende de la complejidad del carácter que se está manejando, de las técnicas, de la eficiencia en la selección y de la influencia del medio ambiente. Los métodos de selección recurrente comprenden aquellos que explotan los efectos aditivos dentro de una población individual (intrapoblacional) y los que explotan efectos aditivos y no aditivos de una cruzas entre dos poblaciones (interpoblacional) Hallauer y Miranda,(1981).

Serrano y Mendoza (1990), Mencionan que en la selección de progenitores se han empleado diversos criterios, los cuales están determinados en gran medida por la amplitud de intereses que motivan a cada fitomejorador. Uno de los criterios más empleados en la selección de progenitores, sobre todo cuando el interés es mejorar algún carácter cuantitativo, es la consideración de la aptitud combinatoria general (ACG) , tomando como base estudios de selección e hibridación en maíz, en el caso del sorgo, a la fecha se menciona que la ACG es más importante que la aptitud combinatoria específica(ACE) Serrano y Mendoza (1990).

Saadalla, *et al* (1994), Menciona que los ambientes de producción de sorgo son caracterizados por diversos tipos de tensiones bioticos y abioticos. Al desarrollar híbridos de sorgo con ambas potencialidades aumentan su rendimiento y mejoran su adaptación. Este aumento dependerá de la utilización y evaluación eficiente de germoplasma exótico.

Rosenow, et al (1997). Menciona que 5000 líneas de germoplasma de sorgo (*Sorghum bicolor*) y 11 líneas que son de importancia en la India, se evaluaron en el Centro de Asia de acuerdo a ocho características morfológicas y agronómicas en temporada de lluvias, y se encontró que era mayor la variación entre temporada de lluvia que dentro de una misma temporada y siendo las características más afectadas la fecha de floración que de 42 días se extendió a 129 días en época de lluvia, la altura se extendió de 33 cm. a 180 cm., Así también la longitud de panoja que de 5 cm. se extendió hasta 52 cm. y el grano fue de tamaño medio y lustroso de testa ausente.
Franklel. (1970), Concluye que lo más frecuente es que de los trabajos de germoplasma se pueda definir los mejores materiales de partida para mejoramiento genético, o bien que sean suficientemente satisfactorios como para usarse por sí solos. Explica que solo en los casos de plantas no propiamente domesticadas (pastos, forestales, ornamentales, medicinales) es frecuente que pueda detectarse de inmediato individuos con potencial para usarse sin modificación.

Mora et-al. (1989), Reportan que a partir de la evaluación de germoplasma desde 1982, mediante la selección masal y el método genealógico identificó genotipos sobresalientes, con los cuales formó la variedad Blanco 86 que presenta buenos rendimientos y resultó superior al testigo Master Gold.

Ortega (1987), Menciona que los trabajos con germoplasma comprenden aspectos muy variados como son su colecta, introducción, conservación, evaluación, estudios básicos y utilización. Si bien con frecuencia se trabaja fundamentalmente con un aspecto no deben de ignorarse el resto ya, que de otra manera los resultados no tendrían aplicación.

Diversidad genética

El grado de diversidad genética ha tenido impacto en la expresión de la heterosis, llegándose afirmar que en términos generales las cruzas entre materiales ampliamente divergente, en cuanto a sus relaciones ancestrales orígenes geográficos, producen un incremento en heterosis a causa del aumento en la diversidad genética entre las
poblaciones o líneas parentales (Lonnquist y Gardner, 1961; Moll et al, 1962 y Paterniani y Lonnquist, 1963). Sin embargo, estudios posteriores conducidos por Moll et al (1965), muestran que la heterosis se incrementa con la divergencia genética dentro de un rango restringido de divergencia, puesto que en cruas extremadamente divergentes la heterosis disminuye. Asimismo, Cress (1966), indica que la respuesta heterótica negativa en ciertos loci anula la respuesta positiva en otros loci, por lo tanto la respuesta neta en el híbrido puede ser una desviación pequeña o no de la media de los padres.

Los fitomejoradores han demostrado la habilidad potencial del germoplasma exótico o extraño para mejorar los caracteres genéticos cualitativos y cuantitativos particulares del cultivo de maíz. Por lo tanto, hay que considerar el mejor procedimiento para la incorporación de germoplasma de manera tal que la divergencia genética del material paternal sea maximizada, mientras que el mismo tiempo se minimice la divergencia genotípica de los niveles o caracteres agronómicos deseados.

Para adaptar nuevas variedades y además incrementar la variabilidad genética presente en las poblaciones base utilizadas en el mejoramiento genético en los E.U, Griffing y Lindstrom(1954), Eberhart(1971) y Hallauer y Sears (1972) han realizado investigaciones tendientes a definir la dosis de germoplasma exótico que incremente la media de rendimiento y al mismo tiempo incorpore caracteres agronómicos deseables , no presentes en las poblaciones bases. Los resultados indican que para obtener nuevas variedades y adaptar otra a los programas de mejoramiento, es necesario considerar desde un 25 a un 50% de germoplasma.
Una alternativa para el aprovechamiento y manejo eficiente de la diversidad genética en una primera instancia es la propuesta por Ortega y Carballo (1983), quienes consideran que un grupo de materiales con características contrastantes que no hayan recibido ninguna selección natural o artificial podrían ser reunidas en poblaciones de amplia base genética, las cuales disminuyen el número de materiales a trabajar y en donde se propicie una gran recombinación con miras a obtener genotipos superiores a mediano y largo plazo.

Goodman (1991), Menciona que casi todos los cultivos tienen la misma estructura general en su germoplasma: un grupo amplio de tipos silvestres, herbáceos, en su mayoría en forma no mejorada. El mejoramiento y la producción, sin embargo, descansa sobre un número muy limitado de líneas y cultivares sobresalientes que a menudo no suman más de una docena. A pesar de las vastas reservas de germoplasma almacenadas en los bancos nacionales e internacionales, en la mayoría de los casos la reserva son usadas como la última alternativa después de considerar las siguientes:

- Germoplasma élite y cruzas élite x élite.
- Cultivares recientes y cruzas élite x cultivares recientes.
- Líneas modernas que no están en uso comercial ("en reserva" como ha sido descrito por Duvick, 1984) y sus cruzas.
- Cultivares y cruzas obsoletas.

Solamente si todas las alternativas fallan, la mayoría de los fitomejoradores se interesan por las reservas de germoplasma no mejorado, o aún peor, se interesan por formas de tipo silvestre o malezas relacionadas.
Tipos de colecciones recomendadas para mejoramiento

House (1982), Menciona que la fundación Rockefeller organizó varios comités para estudiar el problema de colección de germoplasma y la preservación de varios cultivos importantes. Esta actividad esta bajo la responsabilidad del consejo Internacional de Recursos Genéticos Vegetales (IBPGR). Las recomendaciones del Comité acerca de los tipos de colección de sorgo y mijo son los siguientes:

Colección de Entrada: Guardar semilla de cada colección. Esto reduce la posibilidad de pérdida genéticas mediante el descarte de "duplicados aparentes" y el enmascaramiento de características útiles mediante las mezclas de materiales.

Colección Básica: Una estratificación en dos direcciones basada en (i) raza, subraza, distribución geográfica y adaptación, y (ii) caracteres de importancia económica (resistencia a insectos y enfermedades, aptitud combinatoria, respuesta al nitrógeno, etc.). Se necesita una evaluación cuidadosa de la colección, según la experiencia de mejoradores de varias partes del mundo en el desarrollo de la colección básica.

Colección Espontánea: Formada de razas silvestres y herbáceas. Debe mantenerse separada principalmente a causa de las prácticas y manejo especiales ya que algunas razas son consideradas como malas hierbas.
Colecciones Masales: Una serie de compuestos masales que forman mezclas o materiales similares. Debe tenerse cuidado de que en el proceso de mezclado no se pierdan caracteres valiosos, como resistencia a una plaga de insectos. Mezclas especiales pueden crearse de variedades con algún atributo especial. Los materiales en cualquier mezcla deben ser similares en origen, altura, madurez, y adaptación.

Colección de Variedades Liberadas: Incluye todas las variedades(no híbridos) con nombre, y liberados por instituciones públicas o privadas; en algún tiempo estas variedades se consideraron sobresalientes, y dicho tipo de germoplasma superior podría continuar teniendo valor.

Colección de Materiales Genéticos: Incluye materiales con factores genéticos conocidos, traslocados, inversiones, u otras características especiales, también líneas con resistencia a razas particulares de patógenos, insectos, etc. Esto sería un banco de germoplasma.

Colección de Poblaciones: Poblaciones creadas de materiales cuidadosamente seleccionados para conservar germoplasma, y también para ser incrementados mediante selección. El objetivo es proveer materiales base para programas de mejoramiento futuros.

La colección básica al igual que las colecciones masal y de poblaciones deben almacenarse en varias localidades, y podrían usarse conjuntamente con programas importantes de mejoramiento.
Como los reglamentos cuarentenarios se vuelven gradualmente más restrictivos, es cada vez más difícil movilizar semillas libremente, por lo cual sería útil si se pudieran mantener colecciones básicas o de trabajo en los continentes donde el cultivo sea de interés. House(1982)

Mejoramiento genético

Corral (1988), Reporta que el éxito de un programa de mejoramiento de plantas se basa en la diversidad de especies que pueda disponer para su uso. El introdujo 186 genotipos de sorgo provenientes de Africa y 3 genotipos procedentes de la Universidad de Texas A&M. Efectuó selección individual y masal identificando 94 genotipos como lo más sobresalientes.

En la década de los cincuenta, las estaciones experimentales de Nebraska, Iowa y Carolina del Norte en Estados Unidos, se dieron cuenta de la necesidad de la mejora poblacional para obtener mejores líneas para la producción de híbridos superiores. La primera población de sorgo panmitica la obtuvo Webster (1966) en Nebraska, posteriormente le siguieron Doggett (1967) y otros.

Stephens y Quinby (1952) observaron que los híbridos formados entre líneas seleccionadas rindieron de 25 a 40% más que las variedades comerciales normales, es bien conocido, que los híbridos de sorgo ocupan una superficie considerable de siembra de los cultivos a nivel mundial.
Existen ciertas diferencias importantes en lo referente al mejoramiento tradicional que se utiliza en la obtención de híbridos, ya que no es un proceso dinámico donde permita obtener simultáneamente recombinaciones y selecciones continuas para los genotipos con características deseables.

Eberhart (1975), indica que el desarrollo y obtención del sistema de esterilidad genética - citoplásmatica y el cambio de líneas no debe de interferir con el desarrollo de variedades puras de sorgo y se recombinan para obtener población panmictica, los genotipos que resultan seleccionados seguirán una distribución normal. Un híbrido varietal no es más que un genotipo de los posibles en esta población. La obtención de líneas homocigotas nos permite que podamos producir suficiente semilla para los progenitores que formaran un nuevo genotipo híbrido, de tal forma que pueden ser evaluados en un gran número de ambientes y los híbridos superiores pueden ser seleccionados; la identificación de los mejores híbridos del lado derecho de la curva, nos da el incremento que generalmente se tiene arriba de la media de rendimiento.

Interacción genotipo ambiente

Mohammad (1983), En su estudio de estabilidad en sorgo para grano (*sorghum bicolor*) que incluía materiales precoces, intermedios y tardíos evaluándolos en 48 ambientes, concluye que las variaciones en las respuestas lineales de genotipos a ambientes fue atribuible a la diferencia de madurez entre los genotipos. El análisis de estabilidad de los genotipos reveló que había relación en los precoces y en los intermedios observando que la producción de genotipos tardíos fue muy baja.
Concluyendo que los genotipos precoces e intermedios fueron más estables que los tardíos.

Puente (1983), llevó a cabo un experimento en sorgo que consistió en 32 líneas seleccionadas y 7 híbridos experimentales evaluados en tres ambientes con el fin de comparar comportamiento de líneas. Concluyendo que todos los híbridos solo se adaptan a los ambientes favorables, poniéndose de manifiesto que son sensiblemente afectados por el ambiente desfavorable, además considera que probablemente en sorgo existan sistemas genéticos independientes en los caracteres, rendimiento y estabilidad, en el cual se pueden combinar las 2 características en un genotipo mediante un programa de cruzamientos.

Falconer (1978) Menciona que el problema principal de la interacción genotipo-ambiente, se relaciona con la adaptación de los individuos a ciertas condiciones, de tal manera que dicha interacción puede significar que el mejor genotipo en un ambiente no lo sea en otros diferentes.

Voysest y Amézquita (1979) Citado por Almaguer (1985), señalan que para producir una variedad con buena adaptación a una región específica o a un rango alto de ambiente de importancia agronómica, es necesario realizar la siembra en diversos ambientes. Es común que los genotipos tengan un comportamiento diferente en los diversos ambientes, es decir, existe interacción genotipo-ambiente y es a partir de este fenómeno que se decidirá si obtener una variedad con adaptación amplia o bien desarrollar variedades con adaptación específica.
Gómez (1977), En un estudio de la estabilidad del rendimiento y delimitación de áreas de cultivos de sorgo para grano, llevada a cabo en 10 localidades y 21 ambientes en 9 estados de la república, concluye que en un solo año de evaluación que comprenda 2 ciclos de siembra, es posible seleccionar materiales por estabilidad, ya que la interacción varietal por año parece ser de menor importancia que la interacción varietal por localidad.

Es comúnmente observado que el comportamiento relativo de diferentes genotipos se altera al evaluarse en diferentes ambientes, esta modificación en la respuesta de los genotipos es debida a la presencia de una interacción genotipo-ambiente (GA).

Marquez (1974), Menciona que el fenómeno de interacción genotipo-ambiente no es sino el comportamiento relativo diferencial que exhiben los genotipos cuando se les somete a diferentes medios ambientales y que particularmente en la agricultura de México, dada la gran diversidad de condiciones ecológicas con que cuenta el país, es de suma importancia aplicar criterios de "estabilidad" y "deseabilidad" para las variedades que estén en proceso de mejoramiento.

Hill (1975), Discute referente a observaciones hechas por investigadores, que la expresión de un carácter es influenciado por el ambiente y que las fluctuaciones en el rendimiento de las variedades, son afectadas en la calidad de un año a otro.
Las variaciones ambientales según Allard y Bradshaw (1964), pueden ser divididas en dos grupos: variaciones predecibles; dentro de estas se encuentran todas aquellas características permanentes del medio ambiente, tales como caracteres generales del clima, tipo de suelo, etc., se incluyen también en este grupo factores tales como: densidad de población, niveles de fertilización, etc. En tanto que las impredecibles son todas aquellas fluctuaciones función del tiempo, tales como; distribución y cantidad de lluvias y temperaturas.

Los autores citados anteriormente, denominan a una variedad como “buena amortiguadora” o con buena flexibilidad, cuando puede ajustar su proceso de vida en respuesta a fluctuaciones impredecibles del medio ambiente para mantener siempre un alto nivel de productividad.

Distinguen dos tipos de flexibilidad:

1.- Flexibilidad individual. Es cuando el individuo por sí mismo puede ser de buena flexibilidad, de tal manera que cada miembro de la población está bien adaptado a un rango de ambientes.

2.- Flexibilidad poblacional. La variedad puede estar formada de varios genotipos, cada uno adaptado a un pequeño rango de distintos ambientes.

Kambal y Mahmoud (1977), interpretaron que la interacción variedad por año fue pequeña y no significativa, la variedad por localidad y la variedad por localidad por año, la interacción fue altamente significativa . Evidencias presentadas sugirieron que los años de prueba pueden ser reducidos incrementando las localidades.
MATERIALES Y METODOS.

Material genético

Para llevar a cabo la presente investigación se utilizaron 69 genotipos diferentes de germoplasma (cuadro No. 1) pertenecientes al programa de sorgo de la UAAAN. Dichos materiales se han venido evaluándose desde 1993.

Ambiente de prueba.

El experimento fue establecido en Reynosa Tamaulipas en el rancho el cortijo, esta localidad se ubica a una latitud de 26°05’ norte, longitud 98°18’ oeste y 38 msnm. Las condiciones climáticas están clasificadas como clima seco benigno, con una temperatura media anual de 22°C, con un régimen de lluvia de verano y una precipitación media de 400-500 milímetros cúbicos. Se distinguen con la facilidad dos estaciones la de verano y la invierno; en la primera la temperatura llega hasta 40°C en los meses de Mayo – Agosto, y en la segunda, el termómetro baja hasta los 18°C. Los suelos de este municipio son cambisol calcario en la parte norte, en la parte centro y baja el suelo es xerosol, xerosol cálcico y xerosol cálcario y por último en la parte baja del sur, el suelo litosol. Como se sabe, estos suelos son aptos para la agricultura y la ganadería. La tierra en su mayor parte se dedica a la agricultura.
CUADRO No. 1 Material genético utilizado

<table>
<thead>
<tr>
<th>ENTRADA</th>
<th>GENEALOGIA</th>
<th>ENTRADA</th>
<th>GENEALOGIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cel95N 13</td>
<td>36</td>
<td>Cel95N 286</td>
</tr>
<tr>
<td>2</td>
<td>Cel95N 18</td>
<td>37</td>
<td>Cel95N 291</td>
</tr>
<tr>
<td>3</td>
<td>Cel95N 19</td>
<td>38</td>
<td>Cel95N 292</td>
</tr>
<tr>
<td>4</td>
<td>Cel95N 20</td>
<td>39</td>
<td>Cel95N 294</td>
</tr>
<tr>
<td>5</td>
<td>Cel95N 23</td>
<td>40</td>
<td>Cel95N 296</td>
</tr>
<tr>
<td>6</td>
<td>Cel95N 34</td>
<td>41</td>
<td>Cel95N 298</td>
</tr>
<tr>
<td>7</td>
<td>Cel95N 35</td>
<td>42</td>
<td>Cel95N 299</td>
</tr>
<tr>
<td>8</td>
<td>Cel95N 36</td>
<td>43</td>
<td>Cel95N 303</td>
</tr>
<tr>
<td>9</td>
<td>Cel95N 37</td>
<td>44</td>
<td>Cel95N 314</td>
</tr>
<tr>
<td>10</td>
<td>Cel95N 39</td>
<td>45</td>
<td>Cel95N 385</td>
</tr>
<tr>
<td>11</td>
<td>Cel95N 211</td>
<td>46</td>
<td>Cel95N 388</td>
</tr>
<tr>
<td>12</td>
<td>Cel95N 61</td>
<td>47</td>
<td>Cel95N 404</td>
</tr>
<tr>
<td>13</td>
<td>Cel95N 106</td>
<td>48</td>
<td>Cel95N 405</td>
</tr>
<tr>
<td>14</td>
<td>Cel95N 134</td>
<td>49</td>
<td>Cel95N 417</td>
</tr>
<tr>
<td>15</td>
<td>Cel95N 135</td>
<td>50</td>
<td>Cel95N 426</td>
</tr>
<tr>
<td>16</td>
<td>Cel95N 142</td>
<td>51</td>
<td>Cel95N 432</td>
</tr>
<tr>
<td>17</td>
<td>Cel95N 144</td>
<td>52</td>
<td>Cel95N 445</td>
</tr>
<tr>
<td>18</td>
<td>Cel95N 147</td>
<td>53</td>
<td>Cel95N 446</td>
</tr>
<tr>
<td>19</td>
<td>Cel95N 155</td>
<td>54</td>
<td>Cel95N 457</td>
</tr>
<tr>
<td>20</td>
<td>Cel95N 161</td>
<td>55</td>
<td>Cel95N 537</td>
</tr>
<tr>
<td>21</td>
<td>Cel95N 199</td>
<td>56</td>
<td>Cel95N 542</td>
</tr>
<tr>
<td>22</td>
<td>Cel95N 260</td>
<td>57</td>
<td>Cel95N 545</td>
</tr>
<tr>
<td>23</td>
<td>Cel95N 201</td>
<td>58</td>
<td>Cel95N 546</td>
</tr>
<tr>
<td>24</td>
<td>Cel95N 202</td>
<td>59</td>
<td>Cel95N 554</td>
</tr>
<tr>
<td>25</td>
<td>Cel95N 203</td>
<td>60</td>
<td>Cel95N 559</td>
</tr>
<tr>
<td>26</td>
<td>Cel95N 204</td>
<td>61</td>
<td>Cel95N 560</td>
</tr>
<tr>
<td>27</td>
<td>Cel95N 205</td>
<td>62</td>
<td>Cel95N 562</td>
</tr>
<tr>
<td>28</td>
<td>Cel95N 213</td>
<td>63</td>
<td>Cel95N 564</td>
</tr>
<tr>
<td>29</td>
<td>Cel95N 215</td>
<td>64</td>
<td>Cel95N 567</td>
</tr>
<tr>
<td>30</td>
<td>Cel95N 238</td>
<td>65</td>
<td>Cel95N 599</td>
</tr>
<tr>
<td>31</td>
<td>Cel95N 260</td>
<td>66</td>
<td>Cel95N 621</td>
</tr>
<tr>
<td>32</td>
<td>Cel95N 263</td>
<td>67</td>
<td>Cel95N 883</td>
</tr>
<tr>
<td>33</td>
<td>Cel95N 268</td>
<td>68</td>
<td>Cel95N 894</td>
</tr>
<tr>
<td>34</td>
<td>Cel95N 279</td>
<td>69</td>
<td>Cel95N 898</td>
</tr>
<tr>
<td>35</td>
<td>Cel95N 281</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Diseño del experimento.

Los 69 genotipos se establecieron en un diseño de bloque al azar con 2 repeticiones. El tamaño de la parcela experimental fue de 2 surcos de 5 metros de longitud a 80 centímetros entre surco y surco. Se utilizaron 2 metros lineales del surco para evaluar y 10 plantas para incremento.

Siembra

El establecimiento del experimento se realizó bajo riego, se aplicó una dosis de fertilizante de 180-60-00, aplicándose todo el fósforo y la mitad del nitrógeno al momento de la siembra y el resto en la primera escarda. Se realizó el control fitosanitario durante todo el desarrollo del cultivo. La fecha de siembra fue el 24 de febrero de 1998.

Toma de datos

Los datos de días a floración y altura de planta fueron tomados en campo cuando los materiales se encontraban en madures fisiológica, los datos de tamaño de la panoja, número de semillas por panoja, peso de mil semillas, excersión y rendimiento fueron tomados cuando los materiales se encontraban en bodega en las instalaciones de la U.A.A.A.N.

Variables evaluadas

Altura de planta: Se tomaron 10 plantas al azar y se midió cada una desde la base del tallo hasta el ápice de la panícula, expresa en centímetros.
Tamaño de la panoja: Se tomaron 5 panículas al azar, midiendo la distancia que existe entre el raquis donde inicia la panícula hasta el ápice de la misma.

Número de semillas por panoja: Se contó la semilla de cinco panojas, posteriormente se determinó la media de esta característica.

Peso de 1000 semillas. Se contaron mil semillas por cada tratamiento y repetición, posteriormente se pesaron en una balanza analítica.

Excersión: Carácter expresado en cm. Se midió la distancia que hay a partir de la base de la hoja bandera hasta la base de la panoja.

Peso de cinco panojas: Se determinó al seleccionar cinco panojas al azar y posteriormente se pesaron.

Rendimiento: Se determino pesando el grano de la parcela útil y posteriormente se multiplica por un factor de conversión, se determina en kilogramos por hectárea.

\[
\text{Fc} = \frac{\text{Superficie estimada}}{\text{Distancia entre surco} \times \text{tamaño de la muestra}} \times \text{Peso de la muestra}
\]

Donde:

\text{Fc} = \text{Factor de conversión.}

Superficie estimada = 10,000\text{m}\^2.

Distancia entre surco = 80m.

Tamaño de la muestra =2m.
Análisis estadístico

Se efectuó un análisis de varianza, para cada uno de los caracteres en estudio de acuerdo con el diseño experimental Bloques al azar, bajo el siguiente modelo:

\[Y_{ij} = \bar{X} + T_i + B_j + E_{ij} \]

Donde:

\(Y_{ij} \) = Valor observado de la \(i \) -ésima tratamiento de la \(j \) -ésima repetición

\(\bar{X} \) = Media general

\(T_i \) = Efecto del \(i \) -ésimo tratamiento

\(B_j \) = Efecto del \(j \) -ésimo bloque

\(E_{ij} \) = Error experimental

Para obtener el coeficiente de variación se utilizó la siguiente fórmula:

\[C.V. = \left(\frac{C.M.E.}{X} \right) \times 100 \]

Donde:

\(C.V. \) = Coeficiente de variación

\(C.M.E. \) = Cuadrado medio del error experimental
Las comparaciones de medias de los tratamientos se realizaron mediante la prueba de rango múltiple de diferencia Mínima Significativa (D.M.S).

Para la comparación múltiple de medias, se utilizó la siguiente fórmula:

\[
D.M.S. = \frac{t \alpha}{2, g.l.E.E.} \sqrt{\frac{2CMEE}{r}}
\]

Donde:

- \(g.l.E.E. \) = Grados de libertad del error experimental
- \(C.M.E.E. \) = Cuadrado medio del error experimental
- \(r \) = Repeticiones.

Se realizaron correlaciones fenotípicas para observar la relación que existe en las variables, utilizando la siguiente fórmula.

\[
r_{XY} = \frac{Cov_{XY}}{\sqrt{\sigma^2_X \cdot \sigma^2_Y}}
\]

Donde:

- \(r_{XY} \) = Correlación.
Cov XY = Covarianza de la variable X (independiente) con la variable Y (dependiente).

\[\sigma^2_X = \text{Varianza fenotípica de la variable independiente.} \]

\[\sigma^2_Y = \text{Varianza fenotípica de la variable dependiente} \]

\[r = \frac{\sum X Y - \left(\frac{\sum X \sum Y}{n} \right)}{\sqrt{\left(\sum X^2 - \frac{(\sum X)^2}{n} \right) \left(\sum Y^2 - \frac{(\sum Y)^2}{n} \right)}} \]

Donde:

\(X = \text{Valor de la variable independiente.} \)

\(Y = \text{Valor de la variable dependiente.} \)

La significancia de los coeficientes de correlación se estima mediante una prueba de “t” con la siguiente fórmula:

\[t = \frac{r \cdot \sqrt{n - 2}}{\sqrt{1 - r^2}} \]

Donde:

\(r = \text{Coeficiente de correlación.} \)

\(n = \text{Número de tratamientos.} \)
<table>
<thead>
<tr>
<th>Fuentes de variación</th>
<th>G.L</th>
<th>S.C</th>
<th>C.M</th>
<th>F.C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bloques</td>
<td>r-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\Sigma_{j=1}^{r} \frac{Y_{i,j}^{2}}{t} - \overline{Y}_{..}^{2}$</td>
<td>S.C.r</td>
<td>C.M.r</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tratamientos</td>
<td>t-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\Sigma_{i=1}^{t} \frac{Y_{i,..}^{2}}{r} - \overline{Y}_{..}^{2}$</td>
<td>S.C.t</td>
<td>C.M.t</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>rt-1</td>
<td>$\Sigma_{i,j}^{tr} \frac{Y_{i,j}^{2}}{r} - \overline{Y}_{..}^{2}$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
RESULTADOS Y DISCUSION

Los resultados que aquí se presentan son los obtenidos en el comportamiento de los 69 genotipos evaluados en Reynosa Tamaulipas se muestran de acuerdo a lo obtenido en el Análisis de Varianza (ANVA) Y la comparación de medias por el método de Diferencia Mínima Significativa (DMS) al nivel 0.05 y 0.01 efectuados en las variables Altura de planta, Excesión, Longitud de panoja, Número de granos por panoja, Peso de mil semillas, Rendimiento por hectárea y Peso de cinco panoja. Las cuales se discutirán individualmente.

Altura

Para el carácter altura de la planta el ANVA fue altamente significativo para tratamientos y bloques, teniendo un Coeficiente de Variación de 13.37% el cual es aceptable (Cuadro No.3). En la comparación de medias podemos observar que la altura de los tratamientos va de 152.58cm. Cel95N263 y 62.25cm. Cel95N298(Cuadro No. B1) lo cual tiene un rango de 87.33 cm. (Cuadro No.4), la media general es de 95.8596 cm (Cuadro No.4) y solo 32 genotipos están sobre la media general.

En la comparación múltiple de medias se tiene como resultado 22 grupos diferentes que estadísticamente son iguales dentro de cada grupo. El grupo uno contiene los tratamientos Cel95N263, Cel95N554, y Cel95N542, que son los valores más altos
mientras que en la parte media de la tabla se encuentra el tratamiento Cel95N560 que es superado ampliamente por los tratamientos del primer grupo, mientras que en la parte baja de la tabla se encuentra el tratamiento Cel95N298 con la altura muy inferior a la que presentan los tratamientos del grupo uno. (Cuadro B1) Castañón (1986), En trabajos realizados menciona que hay que tomar en cuenta la altura en sorgo según los fines del productor ya que si la planta es alta se puede utilizar tanto el grano como el forraje para ganado, y si solo se requiere buena producción de grano se pueden utilizar materiales productivos de altura adecuada para facilitar la cosecha. Loya (1986), Menciona que la altura de planta para un híbrido es de 1.20m. a 1.50m. para zonas templadas, ya que después de la trilla el productor utiliza la soca para alimento de los animales. Entonces podemos decir que la altura de planta es una característica muy importante que se debe tomar en cuenta en la producción de sorgo y dependiendo del propósito del productor estas se clasificarán en plantas de porte alto, medio, y enanos. La altura que presentan los genotipos evaluados los podemos considerar como buenos a todos los genotipos que tienen la altura mayor de 80cm.

Excesión

Para el carácter de excesión el ANVA fue altamente significativo en tratamientos y bloques, con un coeficiente de variación de 41.37% el cual es muy alto(Cuadro No. 3), en la comparación de medias se observa que los valores van de 16.165 cm. Cel95N564 y .50 cm. Cel95N147 (Cuadro No.B2) observando un rango de 15.665 cm., (Cuadro No.4) y con una media general de 6.8223 cm.(Cuadro No.4), en los que solo 35 genotipos presentaron ser superior a esta media y 34 genotipos son
inferiores a esta media. En la comparación múltiple de medias se tienen 16 grupos diferentes, el primer grupo se encuentran los tratamientos Cel95N 564, Cel95N286, Cel95N426, Cel95N18, Cel95N281, Y Cel95N559 (Cuadro No. B2) superando a los tratamientos de la parte media de la tabla (Cel95N61) mientras que en la parte baja de la tabla se encuentra Cel95N147 lo cual es ampliamente superado por los del primer grupo.

La excersión es una característica deseable en el cultivo de sorgo ya que de acuerdo con esta se lograra tener una cosecha libre de impurezas por lo cual será de mayor calidad. Dentro de los genotipos evaluados la mayoría presentaron excersión buena y solo algunos genotipos mostraron no tener excersión o mostraron una excersión corta, esto refleja la variabilidad del material evaluado el cual es importante en el programa de mejoramiento y de los objetivos planteados. Loya (1986), Menciona que es una característica de mucha importancia para muchos agricultores ya que aparte de preferir una variedad rendidora también la requiere que dicha variedad muestre una excersión buena para que sus cosechas salgan libres de impurezas.

Longitud de panoja

En la característica de longitud de panoja el ANVA muestra para tratamiento ser altamente significativo (Cuadro No.3), los valores extremos para este carácter es de 34.00 cm. Cel95N417 y 15.20 cm. Cel95N898 (Cuadro No.B3) teniendo un rango de 18.80 cm., (Cuadro No 4) y un coeficiente de variación de 12.90% (Cuadro No.3) el cual nos indica que tiene una dispersión de sus datos aceptable. Teniendo una media general de 23.7921 cm. (Cuadro No.4), siendo superior a 32 tratamientos y formando 20 grupos siendo del grupo uno Cel95N417, Cel95N546, Cel95N20, Cel95N894, Cel95N537,
Cel95N142, Cel95N13, y Cel95N542 (Cuadro No. 1) superando ampliamente al Cel95N898 que pertenece al grupo 20. Flores (1989), Evaluando componentes de rendimientos encontró que la longitud de panoja de los genotipos varía de acuerdo con el ambiente de prueba. Esto concuerda con la definición de Marquez (1975) de la interacción genotipo ambiente, el cual menciona que es el comportamiento diferencial que exhiben los genotipos cuando se les somete a diversos ambientes. Entonces podemos decir que la longitud de panoja es una característica deseable dentro del cultivo de sorgo ya que a mayor longitud tendrá mayor número de granos lo cual influye en el rendimiento, los genotipos evaluados presentaron una longitud buena pero si se evaluaran en otra localidad podrían variar el cual sería buena para ver que tanta estabilidad presentan.

Número de granos por panoja

Para la característica del número de granos por panoja el ANVA muestra que es significativo para tratamientos y para bloque es No Significativo (Cuadro No. 3). Teniendo valores extremos de 3227 Cel95N291, y 600.5 Cel95N621 (Cuadro No.B4) Teniendo un rango de 2626, y una media de 1430.5(Cuadro No.4) estando solo 29 tratamientos por encima de este valor y con un coeficiente de variación de 35.94% (Cuadro No.3) el cual tiene una amplia dispersión de datos y esto es desfavorable. En la comparación de medias se tienen 12 diferentes grupos de valores estadísticamente igual dentro de cada grupo, siendo los tratamientos Cel95N291, Cel95N286, Cel95N281, y Cel95N211 (Cuadro No.1) con los valores de 3227, 2275.5, 2264, y 2243 (Cuadro B4) respectivamente superando ampliamente a los del ultimo grupo. Número de granos por
Cuadro No.3. Análisis de Varianza, cuadrados medios, nivel de significancia y coeficiente de variación para 7 características agronómicas, determinadas en condiciones de riego en Reynosa Tamaulipas.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Altura</th>
<th>Excersion</th>
<th>Long. De panoja</th>
<th>No. De granos porpanoja</th>
<th>Peso de mil semillas</th>
<th>Rendimiento X ha.</th>
<th>Peso del grano de 5 panojas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tratamientos (CM)</td>
<td>667**</td>
<td>18.75106**</td>
<td>23.958639**</td>
<td>424104.00**</td>
<td>15.701172**</td>
<td>2568799.25</td>
<td>4855.768555**</td>
</tr>
<tr>
<td>Bloques (CM)</td>
<td>2229.625</td>
<td>134.567383</td>
<td>0.10156</td>
<td>3072.0</td>
<td>2.687500</td>
<td>124928.0</td>
<td>2200.00</td>
</tr>
<tr>
<td>C.V%</td>
<td>13.37</td>
<td>41.37</td>
<td>12.90</td>
<td>35.94</td>
<td>8.14</td>
<td>24.26</td>
<td>21.04</td>
</tr>
</tbody>
</table>

*Significativo al nivel 5% de probabilidad.

**Significativo al nivel 1% de probabilidad
panoja es una característica importante en el rendimiento siendo que entre más grano será mejor para el productor, pero podría bajar la calidad en cuanto a tamaño y calidad para su germinación. Flores (1989),Menciona que el número de granos por panoja es un componente de rendimiento que confiere estabilidad al rendimiento, siendo una característica importante en el mejoramiento.

Peso de mil semillas

Para el carácter de peso de mil semillas el ANVA muestra ser altamente significativo para tratamientos (Cuadro No. 3), teniendo valores extremos máximo de 31.17 gr. Cel95N898, y mínimo de 16.42 gr. Cel95N19 (Cuadro No. B5), teniendo un rango de 14.75 y una media general de 22.79 gr. (Cuadro No. 4) siendo tan solo 32 tratamientos superiores y 37 son inferiores y con un coeficiente de variación de 8.14%(Cuadro No. 3), esto nos indica que el experimento se manejo de manera adecuada para este carácter. En la comparación de medias se tienen 20 grupos diferentes de valores estadísticamente igual dentro de un mismo grupo y diferente entre grupos. El peso de mil semillas es una característica muy importante ya que es un componente de rendimiento y junto con otros componentes va a depender la alta productividad de la variedad o híbrido. Castañon (1986), Menciona que el peso de la semilla se considera, ya que si se tiene un mayor peso, el grano será más grande y por lo tanto más grande su endospermo y va a tener más reservas para una mejor germinación de los materiales. Loya (1986), Menciona que el peso de mil semillas es un componente importante de rendimiento, ya que entre mayor peso tenga las semillas el rendimiento va a ser mayor, a un que también va a depender de otros componentes
Cuadro No. 4 Rango y Media general(μ) de la variación de los caracteres.

<table>
<thead>
<tr>
<th>CARACTER</th>
<th>RANGO</th>
<th>μ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altura de planta</td>
<td>152.580-65.250</td>
<td>95.859</td>
</tr>
<tr>
<td></td>
<td>87.330</td>
<td></td>
</tr>
<tr>
<td>Excursión cm.</td>
<td>16.165-0.500</td>
<td>6.8223</td>
</tr>
<tr>
<td></td>
<td>15.665</td>
<td></td>
</tr>
<tr>
<td>Longitud de panoja cm.</td>
<td>34.000-15.200</td>
<td>23.7921</td>
</tr>
<tr>
<td></td>
<td>18.800</td>
<td></td>
</tr>
<tr>
<td>No. de Granos por panoja</td>
<td>3227-600.500</td>
<td>1430.356</td>
</tr>
<tr>
<td></td>
<td>2626.500</td>
<td></td>
</tr>
<tr>
<td>Peso de mil semillas gr.</td>
<td>31.170-16.420</td>
<td>22.7983</td>
</tr>
<tr>
<td></td>
<td>14.75</td>
<td></td>
</tr>
<tr>
<td>Rendimiento por ha. kg.</td>
<td>7387.50-2187.00</td>
<td>4387.77</td>
</tr>
<tr>
<td></td>
<td>5206.5</td>
<td></td>
</tr>
<tr>
<td>Peso del grano de cinco panoja gr.</td>
<td>319.5-72.0</td>
<td>168.55</td>
</tr>
<tr>
<td></td>
<td>247.5</td>
<td></td>
</tr>
</tbody>
</table>
Rendimiento

Para la característica de rendimiento el ANVA muestra que es altamente significativo (cuadro No. 3), teniendo valores extremos de 7387.50 Kg.(Cel95N204) y 2181Kg.(Cel95N303) teniendo un rango de 5206.5, con una media general de 4387.77 Kg.(Cuadro No.4), siendo superiores 33 tratamientos y 36 son inferiores, con un coeficiente de variación de 24.26%(Cuadro No.3) el cual es aceptable, en la comparación de medias se observaron 20 grupos que estadísticamente son iguales dentro de un grupo y diferentes entre grupos. Flores(1986), Menciona que el rendimiento es una variable que esta controlada por muchos genes por lo que se ve muy afectada por el medio ambiente, también dice que el rendimiento no depende de la variable tamaño de panoja. Mejía (1987), Evaluando 29 genotipos en cuatro localidades observó que el rendimiento varia debido a la interacción genotipo ambiente ya que los híbridos que mostraron su mayor potencial de rendimiento en una localidad, en una segunda localidad disminuyo notoriamente. Matsuo(1975), Menciona que la estabilidad del rendimiento generalmente es debido, a la homeostasis de algunos componentes como son peso de grano, número de granos por unidad de área, y a la plasticidad de otros caracteres como número de panículas por unidad de área.

Peso del grano de cinco panojas

Para la variable de peso de grano de cinco panojas el ANVA muestra que es altamente significativa (cuadro No. 3), teniendo valores extremos de 319.5gr.(Cel95N281), y 72.0gr.(Cel95N621), y con un rango de 247.5gr., y una media
general de 168.55 gr. (Cuadro No. 4), siendo superiores tan solo 33 tratamientos mientras que 36 son inferiores, y teniendo un coeficiente de variación de 21.04% (Cuadro No. 3), en la comparación de medias resultan 20 grupos diferentes, siendo iguales estadísticamente dentro de un mismo grupo pero diferentes entre grupos, teniendo una amplia diferencia el primer grupo a los de la parte media de la tabla y también a los del último grupo. El peso de grano de cinco panojas es una característica importante para el rendimiento, pero no podemos decir que es estable ya que depende de la longitud de panoja, número de grano por panoja y tamaño de grano.

Correlaciones

En el cuadro No. 5 se muestran las correlaciones fenotípicas, donde se observa que la variable altura de la planta presenta un coeficiente de correlación positivo de 0.0349 al 5% de probabilidad con la variable longitud de panoja. Loya (1986), en trabajo realizado encontró que existía correlación negativa entre estas variables, y que podría ser por las condiciones en las que se efectúo el experimento; mientras que la variable longitud de panoja presenta un coeficiente de correlación positivo de 0.3568, 0.4581 al 5% y 1% con respecto a las variables de número de granos por panoja y peso del grano de cinco panojas así también presenta un coeficiente de correlación positivo de 0.2510 al 5% con respecto a rendimiento, esto coincide con el trabajo realizado por Loya (1986), menciona que el tamaño de panoja es un componente importante de rendimiento, la variable de números de granos por panoja tiene un coeficiente de correlación positivo de 0.8160 al 1% con respecto a la variable de peso de grano de cinco panojas, y con respecto al peso de mil semillas tiene un coeficiente de correlación negativo de -0.2619.
al 5%, la variable de rendimiento por hectárea tiene un coeficiente de correlación positivo de 0.3738 al 1% con respecto a la variable de peso de grano de cinco panojas. Laucel (1981), discute que algunas correlaciones significativas entre caracteres es debido principalmente a dos razones:

1).- Dos caracteres mostrados correlación pueden responder igualmente a los factores ambientales como agua, fertilización y otras practicas culturales.

2).- Pueden ser algunas causas genéticas tales como ligamiento entre caracteres que están correlacionados.

Estas correlaciones son de gran uso para los fitomejoradores al proveerles la oportunidad de practicar la selección indirecta de los caracteres y mejorar algunas combinaciones indeseables de carácter.
Cuadro No.5 Matriz de correlaciones fenotípicas y nivel de significancia de 7 características agronómicas evaluadas bajo condición de riego. Reynosa Tamaulipas

<table>
<thead>
<tr>
<th></th>
<th>Altura de planta</th>
<th>Excissorsión de panoja</th>
<th>Longitud de panoja</th>
<th>Número de granos por panoja</th>
<th>Peso de mil semillas</th>
<th>Rendimiento por ha.</th>
<th>Peso de grano de cinco panojas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altura de planta</td>
<td>1.00</td>
<td>0.0979 NS</td>
<td>0.0349*</td>
<td>0.0262 NS</td>
<td>0.1812 NS</td>
<td>0.1383 NS</td>
<td>0.1506 NS</td>
</tr>
<tr>
<td>Excissorsión de panoja</td>
<td>1.00</td>
<td>-0.1136 NS</td>
<td>0.0457NS</td>
<td>-0.1022 NS</td>
<td>0.0874 NS</td>
<td>0.0706 NS</td>
<td></td>
</tr>
<tr>
<td>Longitud de panoja</td>
<td>1.00</td>
<td></td>
<td>0.3568**</td>
<td>-0.0488NS</td>
<td>0.2510*</td>
<td>0.4581**</td>
<td></td>
</tr>
<tr>
<td>Número de granos por panoja</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td>0.2073 NS</td>
<td>0.8160**</td>
<td></td>
</tr>
<tr>
<td>Peso de mil semillas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.1615 NS</td>
<td>0.0441 NS</td>
<td></td>
</tr>
<tr>
<td>Rendimiento por ha.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Peso de grano de cinco panojas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NS = No significativo
* = Significativo
** = Altamente significativo
CONCLUSIONES

De acuerdo a los objetivos planteados en el presente trabajo y a los resultados obtenidos se concluye lo siguiente:

1.- En el análisis de varianza realizado se encontraron diferencias significativas y altamente significativas para los caracteres evaluados. Lo anterior indica que hay variabilidad genética entre los genotipos de germoplasma evaluados, lo cual es muy importante dentro del programa de mejoramiento genético.

2.- En la comparación de medias realizada para cada característica evaluada, indica que existen diferentes genotipos de germoplasma que muestran ser superiores para las diferentes características.

3.- Se encontró correlación de gran magnitud entre altura de planta y longitud de panoja, así como la correlación que existe entre rendimiento con peso del grano de cinco panojas, también la alta correlación que existe entre peso del grano de cinco panojas con el número de granos por panojas y longitud de panojas. Esto nos indica que el comportamiento de los genotipos pueden variar si se evalúan en otras localidades considerando con lo mencionado por Flores(1989) y Marquez(1975)

4.- Considerando el carácter rendimiento, las mejores líneas que tuvieron mejor respuesta fueron los tratamientos Cel95N 204, Cel95N 155, Cel95N 37, Cel95N 279, Cel95N 281, Cel95N 213, Cel95N 61, Cel95N 567, Cel95N 559, Cel95N 894, Cel95N
238, Cel95N 314, Cel95N 299, Cel95N 36, Cel95N292, Cel95N 286 siendo su rendimiento estadísticamente igual y destacando los tratamientos 26, 19, 9 y 34 con rendimiento superior a los 6,390.625 kg./ha., el resultado obtenido en relación con esta característica es superior al rendimiento de los híbridos de esta región, ya que su promedio de rendimiento oscila entre 4 a 5 ton./Ha.

5.- Existen líneas de germoplasma de sorgo para grano con potencial agronómico que podrían ser utilizados como variedad o como progenitores para híbridos, por lo cual podemos plantearnos el objetivo del programa de mejoramiento de sorgo de la institución a formar híbridos que puedan competir con los híbridos comerciales.

Recomendaciones

1.- Seguir evaluando en diferentes localidades los mejores genotipos de sorgo encontrados en este estudio.

2.- Evaluar los 69 genotipos en diferentes localidades con diferentes dosis de fertilización y bajo las condiciones de riego y de temporal, para seguir reevaluando los genotipos que muestren ser los mejores.

3.- Formar híbridos con los mejores genotipos que muestren los caracteres deseables.
RESUMEN

El presente trabajo de investigación se llevó acabo durante el ciclo de primavera verano de 1998, en Reynosa Tamaulipas.

Los objetivos del presente trabajo fueron: Evaluar 69 genotipos de germoplasma de sorgo; Determinar el potencial genético del germoplasma más sobresaliente en cuanto a características agronómicas deseables.

Los 69 genotipos de germoplasma fueron evaluados en un diseño de bloque al azar con 2 repeticiones, el tamaño de la parcela experimental fue de 2 surcos de 5 metros de longitud, y 80 cm. Entre surco, se utilizaron 2 surcos para evaluar y 10 plantas para incremento. La siembra del experimento se realizo bajo riego, se aplico una dosis de fertilizante de 180-60-00 aplicándose todo el fósforo(P) y la mitad de nitrógeno (N) al momento de la siembra y el resto al momento de la primera escarda.

Las variables evaluadas fueron altura de planta, tamaño de panoja, número de granos por panoja, peso de mil semillas, excersión, rendimiento y peso del grano de cinco panojas, se realizaron análisis de varianza con el propósito de detectar diferencias estadísticas entre los genotipos, así como correlaciones para observar las asociaciones
entre las variables, la comparación de medias se realizo mediante la prueba de diferencia mínima significativa (DMS).

Las variables evaluadas resultaron ser altamente significativas y solo el número de granos por panoja resulto ser significativo al 0.05%, en lo que respecta a correlaciones se encontró que no todas las variables evaluadas tienen correlación, algunas están altamente correlacionadas de forma positiva y negativa (+ o -), . En la comparación de medias se encontró que los genotipos más altos no son los más rendidores, ni los que presentan la mayor excersión, ni los que presentan las panojas más largas, ni los que tienen más granos por panoja, ni los que tienen el mayor peso de mil semillas, a excepción de los genotipos 34 y 35 que por lo regular siempre estaban entre los mejores.
BIBLIOGRAFÍA

Burton Vs 1979. Handring crop-pollinates germoplasm efficiently crop sci(19)686-690 Georgia, U.S.A

Puente. M. J. L., 1983. Evaluación de líneas per-se y su estabilidad para rendimiento de sorgo para grano en tres ambientes temporales. Tesis M. C., UAAAN, Saltillo, Coahuila

APENDICE

<table>
<thead>
<tr>
<th></th>
<th>GL</th>
<th>SC</th>
<th>CM</th>
<th>FC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tratamiento</td>
<td>68</td>
<td>46063.750</td>
<td>677.408</td>
<td>4.1240**</td>
</tr>
<tr>
<td>Bloques</td>
<td>1</td>
<td>2229.625</td>
<td>2229.625</td>
<td>13.5737</td>
</tr>
<tr>
<td>Error</td>
<td>68</td>
<td>11169.750</td>
<td>164.261</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>137</td>
<td>594463.125</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[\bar{X}=95.8596 \quad \text{C.V.}=13.37% \]

** Altamente significativo

<table>
<thead>
<tr>
<th></th>
<th>GL</th>
<th>SC</th>
<th>CM</th>
<th>FC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tratamiento</td>
<td>68</td>
<td>1275.075195</td>
<td>18.751106</td>
<td>2.3539**</td>
</tr>
<tr>
<td>Bloques</td>
<td>1</td>
<td>134.567383</td>
<td>134.567383</td>
<td>16.8929</td>
</tr>
<tr>
<td>Error</td>
<td>68</td>
<td>541.683594</td>
<td>7.965935</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>137</td>
<td>1951.326172</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[\bar{X}=6.8223 \quad \text{C.V.}=41.37\% \]

** Altamente significativo

<table>
<thead>
<tr>
<th>FV</th>
<th>GL</th>
<th>SC</th>
<th>CM</th>
<th>FC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tratamiento</td>
<td>68</td>
<td>1629.187500</td>
<td>23.958639</td>
<td>2.5434**</td>
</tr>
<tr>
<td>Bloques</td>
<td>1</td>
<td>0.101563</td>
<td>0.101563</td>
<td>0.0108</td>
</tr>
<tr>
<td>Error</td>
<td>68</td>
<td>640.554688</td>
<td>9.419922</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>137</td>
<td>2269.843750</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[\bar{X}=23.7921 \quad \text{C.V.}=12.90\% \]

** Altamente significativo

<table>
<thead>
<tr>
<th>FV</th>
<th>GL</th>
<th>SC</th>
<th>CM</th>
<th>FC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tratamiento</td>
<td>68</td>
<td>28839072.00</td>
<td>424104.000</td>
<td>1.6048*</td>
</tr>
<tr>
<td>Bloques</td>
<td>1</td>
<td>3072.00</td>
<td>3072.00</td>
<td>0.0116</td>
</tr>
<tr>
<td>Error</td>
<td>68</td>
<td>17970240.00</td>
<td>264268.250</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>137</td>
<td>46812384.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[\bar{X}=1430.3569 \quad \text{C.V.}=35.94\% \]

* Significativo

<table>
<thead>
<tr>
<th>FV</th>
<th>GL</th>
<th>SC</th>
<th>CM</th>
<th>FC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tratamiento</td>
<td>68</td>
<td>1067.679688</td>
<td>15.701172</td>
<td>4.5591**</td>
</tr>
<tr>
<td>Bloques</td>
<td>1</td>
<td>2.687500</td>
<td>2.687500</td>
<td>0.7804</td>
</tr>
<tr>
<td>Error</td>
<td>68</td>
<td>234.187500</td>
<td>3.443934</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>137</td>
<td>1304.554688</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[\bar{X} = 22.7983 \quad \text{C.V.}= 8.14\% \]

** Altamente significativo

Cuadro No. A6. Análisis de varianza para el carácter rendimiento por hectárea Reynosa Tamaulipas. 1998

<table>
<thead>
<tr>
<th>FV</th>
<th>GL</th>
<th>SC</th>
<th>CM</th>
<th>FC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tratamiento</td>
<td>68</td>
<td>174676992.0</td>
<td>2568779.25</td>
<td>2.2676**</td>
</tr>
<tr>
<td>Bloque</td>
<td>1</td>
<td>124928.0</td>
<td>124928.00</td>
<td>0.1103</td>
</tr>
<tr>
<td>Error</td>
<td>68</td>
<td>77033216.0</td>
<td>1132841.375</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>137</td>
<td>251835136.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[\bar{X} = 4387.77 \quad \text{C.V.}= 24.26\% \]

** = Altamente significativo
Cuadro No. A7. Análisis de varianza para el carácter de peso del grano de cinco panojas Reynosa Tamaulipas. 1998

<table>
<thead>
<tr>
<th></th>
<th>GL</th>
<th>SC</th>
<th>CM</th>
<th>FC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tratamiento</td>
<td>68</td>
<td>330192.25</td>
<td>4855.768555</td>
<td>3.8590**</td>
</tr>
<tr>
<td>Bloques</td>
<td>1</td>
<td>2200.00</td>
<td>2200.00</td>
<td>1.7484</td>
</tr>
<tr>
<td>Error</td>
<td>68</td>
<td>85563.50</td>
<td>1258.286743</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>137</td>
<td>417955.75</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[\bar{X} = 168.55 \quad \text{C.V.} = 21.04\% \]

**Altamente significativo
CUADRO No. B1. Comparación de medias para alturas

<table>
<thead>
<tr>
<th>TRATAMIENTO</th>
<th>MEDIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>152.5800</td>
</tr>
<tr>
<td>59</td>
<td>136.5800</td>
</tr>
<tr>
<td>56</td>
<td>129.2500</td>
</tr>
<tr>
<td>36</td>
<td>126.5800</td>
</tr>
<tr>
<td>54</td>
<td>124.5800</td>
</tr>
<tr>
<td>34</td>
<td>122.5000</td>
</tr>
<tr>
<td>51</td>
<td>122.2450</td>
</tr>
<tr>
<td>64</td>
<td>120.5000</td>
</tr>
<tr>
<td>52</td>
<td>120.4100</td>
</tr>
<tr>
<td>38</td>
<td>118.7500</td>
</tr>
<tr>
<td>13</td>
<td>117.0800</td>
</tr>
<tr>
<td>69</td>
<td>115.9150</td>
</tr>
<tr>
<td>1</td>
<td>112.1600</td>
</tr>
<tr>
<td>55</td>
<td>112.0800</td>
</tr>
<tr>
<td>19</td>
<td>111.7450</td>
</tr>
<tr>
<td>63</td>
<td>111.5800</td>
</tr>
<tr>
<td>28</td>
<td>110.9150</td>
</tr>
<tr>
<td>29</td>
<td>106.1690</td>
</tr>
<tr>
<td>49</td>
<td>105.6650</td>
</tr>
<tr>
<td>57</td>
<td>105.0800</td>
</tr>
<tr>
<td>58</td>
<td>104.9100</td>
</tr>
<tr>
<td>4</td>
<td>102.3300</td>
</tr>
<tr>
<td>65</td>
<td>102.0000</td>
</tr>
<tr>
<td>31</td>
<td>101.6600</td>
</tr>
<tr>
<td>5</td>
<td>100.6650</td>
</tr>
<tr>
<td>7</td>
<td>100.1650</td>
</tr>
<tr>
<td>44</td>
<td>99.5000</td>
</tr>
<tr>
<td>33</td>
<td>98.6600</td>
</tr>
<tr>
<td>14</td>
<td>98.0800</td>
</tr>
<tr>
<td>3</td>
<td>96.6650</td>
</tr>
<tr>
<td>35</td>
<td>96.4950</td>
</tr>
<tr>
<td>50</td>
<td>96.3300</td>
</tr>
<tr>
<td>53</td>
<td>94.9950</td>
</tr>
<tr>
<td>61</td>
<td>94.8300</td>
</tr>
<tr>
<td>8</td>
<td>92.5000</td>
</tr>
<tr>
<td>25</td>
<td>92.3300</td>
</tr>
<tr>
<td>30</td>
<td>91.6000</td>
</tr>
<tr>
<td>16</td>
<td>91.0800</td>
</tr>
<tr>
<td>68</td>
<td>90.4100</td>
</tr>
<tr>
<td>24</td>
<td>90.3300</td>
</tr>
<tr>
<td>45</td>
<td>89.6650</td>
</tr>
<tr>
<td>15</td>
<td>89.6650</td>
</tr>
<tr>
<td>48</td>
<td>86.2450</td>
</tr>
<tr>
<td>10</td>
<td>86.2450</td>
</tr>
<tr>
<td>60</td>
<td>85.6650</td>
</tr>
<tr>
<td>26</td>
<td>85.0800</td>
</tr>
<tr>
<td>46</td>
<td>84.4950</td>
</tr>
<tr>
<td>62</td>
<td>83.9950</td>
</tr>
<tr>
<td>12</td>
<td>83.9950</td>
</tr>
<tr>
<td>20</td>
<td>83.3300</td>
</tr>
<tr>
<td>40</td>
<td>82.9950</td>
</tr>
<tr>
<td>27</td>
<td>82.9950</td>
</tr>
<tr>
<td>6</td>
<td>82.5000</td>
</tr>
<tr>
<td>42</td>
<td>82.1600</td>
</tr>
<tr>
<td>66</td>
<td>82.0800</td>
</tr>
<tr>
<td>2</td>
<td>81.7450</td>
</tr>
<tr>
<td>11</td>
<td>79.6600</td>
</tr>
<tr>
<td>67</td>
<td>78.8300</td>
</tr>
<tr>
<td>17</td>
<td>78.0800</td>
</tr>
<tr>
<td>18</td>
<td>76.8300</td>
</tr>
<tr>
<td>21</td>
<td>74.4950</td>
</tr>
<tr>
<td>37</td>
<td>73.9100</td>
</tr>
<tr>
<td>9</td>
<td>70.9950</td>
</tr>
<tr>
<td>39</td>
<td>70.5800</td>
</tr>
<tr>
<td>22</td>
<td>70.4950</td>
</tr>
<tr>
<td>23</td>
<td>69.5000</td>
</tr>
<tr>
<td>43</td>
<td>69.0000</td>
</tr>
<tr>
<td>47</td>
<td>67.7500</td>
</tr>
<tr>
<td>41</td>
<td>65.2500</td>
</tr>
</tbody>
</table>
CUADRO No.B2 Comparación de medias para el carácter de excersión.

<table>
<thead>
<tr>
<th>TRATAMIENTO</th>
<th>MEDIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>63</td>
<td>16.1650</td>
</tr>
<tr>
<td>36</td>
<td>15.8700</td>
</tr>
<tr>
<td>50</td>
<td>12.6250</td>
</tr>
<tr>
<td>2</td>
<td>11.4150</td>
</tr>
<tr>
<td>35</td>
<td>11.1650</td>
</tr>
<tr>
<td>60</td>
<td>10.7850</td>
</tr>
<tr>
<td>53</td>
<td>10.1200</td>
</tr>
<tr>
<td>31</td>
<td>9.8700</td>
</tr>
<tr>
<td>52</td>
<td>9.4550</td>
</tr>
<tr>
<td>38</td>
<td>9.3700</td>
</tr>
<tr>
<td>61</td>
<td>9.2050</td>
</tr>
<tr>
<td>1</td>
<td>9.1050</td>
</tr>
<tr>
<td>62</td>
<td>9.0400</td>
</tr>
<tr>
<td>47</td>
<td>8.9550</td>
</tr>
<tr>
<td>58</td>
<td>8.6600</td>
</tr>
<tr>
<td>7</td>
<td>8.6250</td>
</tr>
<tr>
<td>26</td>
<td>8.4150</td>
</tr>
<tr>
<td>4</td>
<td>8.2450</td>
</tr>
<tr>
<td>22</td>
<td>8.1650</td>
</tr>
<tr>
<td>40</td>
<td>7.9700</td>
</tr>
<tr>
<td>42</td>
<td>7.9550</td>
</tr>
<tr>
<td>55</td>
<td>7.8300</td>
</tr>
<tr>
<td>29</td>
<td>7.7900</td>
</tr>
<tr>
<td>54</td>
<td>7.5000</td>
</tr>
<tr>
<td>19</td>
<td>7.3750</td>
</tr>
<tr>
<td>14</td>
<td>7.2500</td>
</tr>
<tr>
<td>25</td>
<td>7.2050</td>
</tr>
<tr>
<td>3</td>
<td>7.2050</td>
</tr>
<tr>
<td>51</td>
<td>7.2050</td>
</tr>
<tr>
<td>9</td>
<td>7.0800</td>
</tr>
<tr>
<td>45</td>
<td>6.9550</td>
</tr>
<tr>
<td>37</td>
<td>6.9100</td>
</tr>
<tr>
<td>65</td>
<td>6.7700</td>
</tr>
<tr>
<td>12</td>
<td>6.7050</td>
</tr>
<tr>
<td>56</td>
<td>6.7050</td>
</tr>
<tr>
<td>27</td>
<td>6.4550</td>
</tr>
<tr>
<td>34</td>
<td>6.4550</td>
</tr>
<tr>
<td>20</td>
<td>6.3300</td>
</tr>
<tr>
<td>41</td>
<td>6.2450</td>
</tr>
<tr>
<td>23</td>
<td>6.0800</td>
</tr>
<tr>
<td>59</td>
<td>5.4550</td>
</tr>
<tr>
<td>33</td>
<td>5.3700</td>
</tr>
<tr>
<td>57</td>
<td>5.3300</td>
</tr>
<tr>
<td>24</td>
<td>5.3150</td>
</tr>
<tr>
<td>48</td>
<td>5.1200</td>
</tr>
<tr>
<td>49</td>
<td>5.0800</td>
</tr>
<tr>
<td>11</td>
<td>5.0800</td>
</tr>
<tr>
<td>10</td>
<td>4.7900</td>
</tr>
<tr>
<td>28</td>
<td>4.7050</td>
</tr>
<tr>
<td>21</td>
<td>4.7050</td>
</tr>
<tr>
<td>15</td>
<td>4.4150</td>
</tr>
<tr>
<td>46</td>
<td>4.2900</td>
</tr>
<tr>
<td>16</td>
<td>4.2050</td>
</tr>
<tr>
<td>67</td>
<td>4.1200</td>
</tr>
<tr>
<td>8</td>
<td>4.0800</td>
</tr>
<tr>
<td>44</td>
<td>3.7550</td>
</tr>
<tr>
<td>66</td>
<td>3.7050</td>
</tr>
<tr>
<td>30</td>
<td>3.7050</td>
</tr>
<tr>
<td>68</td>
<td>3.4550</td>
</tr>
<tr>
<td>69</td>
<td>2.9950</td>
</tr>
<tr>
<td>32</td>
<td>2.8750</td>
</tr>
<tr>
<td>17</td>
<td>2.2900</td>
</tr>
<tr>
<td>13</td>
<td>2.2050</td>
</tr>
<tr>
<td>64</td>
<td>1.1600</td>
</tr>
<tr>
<td>43</td>
<td>0.7500</td>
</tr>
<tr>
<td>18</td>
<td>0.5000</td>
</tr>
</tbody>
</table>
CUADRO No.B3 Comparación de medias para el carácter longitud de panoja

<table>
<thead>
<tr>
<th>TRATAMIENTO</th>
<th>MEDIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>49</td>
<td>34.0000</td>
</tr>
<tr>
<td>58</td>
<td>30.8000</td>
</tr>
<tr>
<td>4</td>
<td>30.4000</td>
</tr>
<tr>
<td>68</td>
<td>29.7000</td>
</tr>
<tr>
<td>55</td>
<td>28.2000</td>
</tr>
<tr>
<td>16</td>
<td>28.1000</td>
</tr>
<tr>
<td>1</td>
<td>27.9000</td>
</tr>
<tr>
<td>56</td>
<td>27.9000</td>
</tr>
<tr>
<td>30</td>
<td>27.8000</td>
</tr>
<tr>
<td>17</td>
<td>27.7000</td>
</tr>
<tr>
<td>34</td>
<td>27.5000</td>
</tr>
<tr>
<td>14</td>
<td>27.4000</td>
</tr>
<tr>
<td>32</td>
<td>27.2000</td>
</tr>
<tr>
<td>59</td>
<td>26.8000</td>
</tr>
<tr>
<td>19</td>
<td>26.7000</td>
</tr>
<tr>
<td>24</td>
<td>26.6000</td>
</tr>
<tr>
<td>44</td>
<td>26.5000</td>
</tr>
<tr>
<td>57</td>
<td>26.0000</td>
</tr>
<tr>
<td>5</td>
<td>25.3000</td>
</tr>
<tr>
<td>35</td>
<td>25.2000</td>
</tr>
<tr>
<td>18</td>
<td>25.1000</td>
</tr>
<tr>
<td>11</td>
<td>24.9000</td>
</tr>
<tr>
<td>42</td>
<td>24.8000</td>
</tr>
<tr>
<td>37</td>
<td>24.7000</td>
</tr>
<tr>
<td>26</td>
<td>24.6000</td>
</tr>
<tr>
<td>54</td>
<td>23.9000</td>
</tr>
<tr>
<td>10</td>
<td>23.8000</td>
</tr>
<tr>
<td>62</td>
<td>23.7000</td>
</tr>
<tr>
<td>60</td>
<td>23.7000</td>
</tr>
<tr>
<td>36</td>
<td>23.7000</td>
</tr>
<tr>
<td>45</td>
<td>23.7000</td>
</tr>
<tr>
<td>67</td>
<td>23.7000</td>
</tr>
<tr>
<td>42</td>
<td>23.7000</td>
</tr>
<tr>
<td>11</td>
<td>23.4000</td>
</tr>
<tr>
<td>53</td>
<td>23.3000</td>
</tr>
<tr>
<td>46</td>
<td>23.2000</td>
</tr>
<tr>
<td>23</td>
<td>23.1000</td>
</tr>
<tr>
<td>6</td>
<td>22.9000</td>
</tr>
<tr>
<td>25</td>
<td>22.9000</td>
</tr>
<tr>
<td>51</td>
<td>22.9000</td>
</tr>
<tr>
<td>21</td>
<td>22.7000</td>
</tr>
<tr>
<td>33</td>
<td>22.7000</td>
</tr>
<tr>
<td>65</td>
<td>22.6000</td>
</tr>
<tr>
<td>20</td>
<td>22.2000</td>
</tr>
<tr>
<td>8</td>
<td>20.0000</td>
</tr>
<tr>
<td>38</td>
<td>20.0000</td>
</tr>
<tr>
<td>7</td>
<td>18.8000</td>
</tr>
<tr>
<td>43</td>
<td>18.8000</td>
</tr>
<tr>
<td>29</td>
<td>18.7000</td>
</tr>
<tr>
<td>31</td>
<td>16.0000</td>
</tr>
<tr>
<td>13</td>
<td>16.0000</td>
</tr>
<tr>
<td>12</td>
<td>20.8000</td>
</tr>
<tr>
<td>2</td>
<td>20.7000</td>
</tr>
<tr>
<td>9</td>
<td>20.5000</td>
</tr>
<tr>
<td>66</td>
<td>20.5000</td>
</tr>
<tr>
<td>41</td>
<td>20.5000</td>
</tr>
<tr>
<td>22</td>
<td>20.0000</td>
</tr>
<tr>
<td>28</td>
<td>19.9000</td>
</tr>
<tr>
<td>47</td>
<td>19.7000</td>
</tr>
<tr>
<td>50</td>
<td>19.3000</td>
</tr>
<tr>
<td>52</td>
<td>19.1000</td>
</tr>
<tr>
<td>40</td>
<td>18.7000</td>
</tr>
<tr>
<td>39</td>
<td>18.5000</td>
</tr>
<tr>
<td>27</td>
<td>18.2000</td>
</tr>
<tr>
<td>48</td>
<td>17.8000</td>
</tr>
<tr>
<td>69</td>
<td>15.2000</td>
</tr>
</tbody>
</table>
CUADRO No.B4 Comparación de medias para el carácter número de granos por panoja.

<table>
<thead>
<tr>
<th>TRATAMIENTO</th>
<th>MEDIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>37</td>
<td>3227.0000</td>
</tr>
<tr>
<td>36</td>
<td>2275.5000</td>
</tr>
<tr>
<td>35</td>
<td>2264.0000</td>
</tr>
<tr>
<td>11</td>
<td>2243.5000</td>
</tr>
<tr>
<td>4</td>
<td>2177.0000</td>
</tr>
<tr>
<td>42</td>
<td>2092.5000</td>
</tr>
<tr>
<td>44</td>
<td>2050.5000</td>
</tr>
<tr>
<td>28</td>
<td>1966.0000</td>
</tr>
<tr>
<td>14</td>
<td>1919.5000</td>
</tr>
<tr>
<td>59</td>
<td>1916.5000</td>
</tr>
<tr>
<td>67</td>
<td>1904.5000</td>
</tr>
<tr>
<td>62</td>
<td>1884.5000</td>
</tr>
<tr>
<td>56</td>
<td>1864.5000</td>
</tr>
<tr>
<td>16</td>
<td>1844.5000</td>
</tr>
<tr>
<td>32</td>
<td>1820.5000</td>
</tr>
<tr>
<td>55</td>
<td>1819.0000</td>
</tr>
<tr>
<td>1</td>
<td>1755.5000</td>
</tr>
<tr>
<td>27</td>
<td>1730.0000</td>
</tr>
<tr>
<td>38</td>
<td>1667.5000</td>
</tr>
<tr>
<td>12</td>
<td>1656.0000</td>
</tr>
<tr>
<td>10</td>
<td>1643.5000</td>
</tr>
<tr>
<td>30</td>
<td>1614.5000</td>
</tr>
<tr>
<td>57</td>
<td>1574.0000</td>
</tr>
<tr>
<td>5</td>
<td>1558.0000</td>
</tr>
<tr>
<td>61</td>
<td>1556.5000</td>
</tr>
<tr>
<td>22</td>
<td>1530.0000</td>
</tr>
<tr>
<td>23</td>
<td>1511.0000</td>
</tr>
<tr>
<td>58</td>
<td>1481.5000</td>
</tr>
<tr>
<td>8</td>
<td>1452.5000</td>
</tr>
<tr>
<td>46</td>
<td>1391.5000</td>
</tr>
<tr>
<td>64</td>
<td>1384.5000</td>
</tr>
<tr>
<td>18</td>
<td>1376.0000</td>
</tr>
<tr>
<td>47</td>
<td>1374.0000</td>
</tr>
<tr>
<td>6</td>
<td>1354.5000</td>
</tr>
<tr>
<td>43</td>
<td>1304.5000</td>
</tr>
<tr>
<td>33</td>
<td>1296.0000</td>
</tr>
<tr>
<td>41</td>
<td>1291.0000</td>
</tr>
<tr>
<td>3</td>
<td>1275.5000</td>
</tr>
<tr>
<td>68</td>
<td>1274.5000</td>
</tr>
<tr>
<td>25</td>
<td>1271.0000</td>
</tr>
<tr>
<td>60</td>
<td>1248.0000</td>
</tr>
<tr>
<td>54</td>
<td>1224.5000</td>
</tr>
<tr>
<td>49</td>
<td>1216.0000</td>
</tr>
<tr>
<td>17</td>
<td>1213.0000</td>
</tr>
<tr>
<td>21</td>
<td>1212.5000</td>
</tr>
<tr>
<td>26</td>
<td>1180.0000</td>
</tr>
<tr>
<td>9</td>
<td>1170.5000</td>
</tr>
<tr>
<td>39</td>
<td>1161.0000</td>
</tr>
<tr>
<td>24</td>
<td>1154.0000</td>
</tr>
<tr>
<td>34</td>
<td>1124.5000</td>
</tr>
<tr>
<td>45</td>
<td>1108.5000</td>
</tr>
<tr>
<td>63</td>
<td>1108.0000</td>
</tr>
<tr>
<td>51</td>
<td>1092.5000</td>
</tr>
<tr>
<td>15</td>
<td>1090.0000</td>
</tr>
<tr>
<td>19</td>
<td>1087.0000</td>
</tr>
<tr>
<td>20</td>
<td>1070.0000</td>
</tr>
<tr>
<td>29</td>
<td>1059.0000</td>
</tr>
<tr>
<td>50</td>
<td>1024.0000</td>
</tr>
<tr>
<td>2</td>
<td>1012.5000</td>
</tr>
<tr>
<td>31</td>
<td>1012.0000</td>
</tr>
<tr>
<td>65</td>
<td>1000.5000</td>
</tr>
<tr>
<td>7</td>
<td>985.5000</td>
</tr>
<tr>
<td>13</td>
<td>919.0000</td>
</tr>
<tr>
<td>48</td>
<td>918.0000</td>
</tr>
<tr>
<td>40</td>
<td>903.0000</td>
</tr>
<tr>
<td>53</td>
<td>802.5000</td>
</tr>
<tr>
<td>52</td>
<td>791.0000</td>
</tr>
<tr>
<td>69</td>
<td>603.5000</td>
</tr>
<tr>
<td>66</td>
<td>600.5000</td>
</tr>
</tbody>
</table>
CUADRO No. B5 Comparación de medias para el carácter de peso de mil semillas.

<table>
<thead>
<tr>
<th>TRATAMIENTO</th>
<th>MEDIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>69</td>
<td>31.1700 A</td>
</tr>
<tr>
<td>13</td>
<td>30.7750 A</td>
</tr>
<tr>
<td>33</td>
<td>29.2800 AB</td>
</tr>
<tr>
<td>16</td>
<td>26.9450 BC</td>
</tr>
<tr>
<td>34</td>
<td>26.5450 BCD</td>
</tr>
<tr>
<td>26</td>
<td>26.2650 BCDE</td>
</tr>
<tr>
<td>42</td>
<td>26.2450 BCDEF</td>
</tr>
<tr>
<td>63</td>
<td>26.0600 BCDEFG</td>
</tr>
<tr>
<td>24</td>
<td>25.3200 CDEFG</td>
</tr>
<tr>
<td>49</td>
<td>25.2800 CDEFGH</td>
</tr>
<tr>
<td>19</td>
<td>25.2400 CDEFGH</td>
</tr>
<tr>
<td>51</td>
<td>25.2400 CDEFGH</td>
</tr>
<tr>
<td>53</td>
<td>24.9450 CDEFGHI</td>
</tr>
<tr>
<td>59</td>
<td>24.9350 CDEFGHI</td>
</tr>
<tr>
<td>52</td>
<td>24.8650 CDEFGHI</td>
</tr>
<tr>
<td>17</td>
<td>24.7000 CDEFGHIJ</td>
</tr>
<tr>
<td>15</td>
<td>24.6150 CDEFGHJKLM</td>
</tr>
<tr>
<td>50</td>
<td>24.3200 CDEFGHJKLM</td>
</tr>
<tr>
<td>38</td>
<td>24.2600 CDEFGHJKLMNOP</td>
</tr>
<tr>
<td>40</td>
<td>24.2200 CDEFGHJKLMNOP</td>
</tr>
<tr>
<td>29</td>
<td>24.0250 CDEFGHJKLMNOP</td>
</tr>
<tr>
<td>35</td>
<td>24.0150 CDEFGHJKLMNOP</td>
</tr>
<tr>
<td>62</td>
<td>23.9300 CDEFGHJKLMNOP</td>
</tr>
<tr>
<td>45</td>
<td>23.8150 CDEFGHJKLMNOP</td>
</tr>
<tr>
<td>14</td>
<td>23.7800 CDEFGHJKLMNOP</td>
</tr>
<tr>
<td>60</td>
<td>23.7400 CDEFGHJKLMNOP</td>
</tr>
<tr>
<td>37</td>
<td>23.6300 CDEFGHJKLMNOP</td>
</tr>
<tr>
<td>66</td>
<td>23.3550 CDEFGHJKLMNOP</td>
</tr>
<tr>
<td>18</td>
<td>23.1750 CDEFGHJKLMNOP</td>
</tr>
<tr>
<td>64</td>
<td>23.0550 CDEFGHJKLMNOP</td>
</tr>
<tr>
<td>23</td>
<td>23.0100 CDEFGHJKLMNOP</td>
</tr>
<tr>
<td>61</td>
<td>22.8200 CDEFGHJKLMNOP</td>
</tr>
<tr>
<td>30</td>
<td>22.6550 CDEFGHJKLMNOP</td>
</tr>
<tr>
<td>56</td>
<td>22.5950 CDEFGHJKLMNOP</td>
</tr>
<tr>
<td>25</td>
<td>22.5500 CDEFGHJKLMNOP</td>
</tr>
<tr>
<td>5</td>
<td>22.4200 CDEFGHJKLMNOP</td>
</tr>
<tr>
<td>58</td>
<td>22.3500 CDEFGHJKLMNOP</td>
</tr>
<tr>
<td>65</td>
<td>22.2200 CDEFGHJKLMNOP</td>
</tr>
<tr>
<td>6</td>
<td>21.9950 CDEFGHJKLMNOP</td>
</tr>
<tr>
<td>10</td>
<td>21.9650 CDEFGHJKLMNOP</td>
</tr>
<tr>
<td>57</td>
<td>21.9350 CDEFGHJKLMNOP</td>
</tr>
<tr>
<td>31</td>
<td>21.9200 CDEFGHJKLMNOP</td>
</tr>
<tr>
<td>7</td>
<td>21.9050 CDEFGHJKLMNOP</td>
</tr>
<tr>
<td>21</td>
<td>21.8800 CDEFGHJKLMNOP</td>
</tr>
<tr>
<td>43</td>
<td>21.8300 CDEFGHJKLMNOP</td>
</tr>
<tr>
<td>8</td>
<td>21.8050 CDEFGHJKLMNOP</td>
</tr>
<tr>
<td>67</td>
<td>21.4900 CDEFGHJKLMNOP</td>
</tr>
<tr>
<td>68</td>
<td>21.3350 CDEFGHJKLMNOP</td>
</tr>
<tr>
<td>12</td>
<td>21.3200 CDEFGHJKLMNOP</td>
</tr>
<tr>
<td>9</td>
<td>21.2700 CDEFGHJKLMNOP</td>
</tr>
<tr>
<td>41</td>
<td>21.1450 CDEFGHJKLMNOP</td>
</tr>
<tr>
<td>54</td>
<td>21.1300 CDEFGHJKLMNOP</td>
</tr>
<tr>
<td>2</td>
<td>21.0600 CDEFGHJKLMNOP</td>
</tr>
<tr>
<td>46</td>
<td>20.9700 CDEFGHJKLMNOP</td>
</tr>
<tr>
<td>4</td>
<td>20.9400 CDEFGHJKLMNOP</td>
</tr>
<tr>
<td>11</td>
<td>20.8600 CDEFGHJKLMNOP</td>
</tr>
<tr>
<td>39</td>
<td>20.6950 CDEFGHJKLMNOP</td>
</tr>
<tr>
<td>20</td>
<td>20.6550 CDEFGHJKLMNOP</td>
</tr>
<tr>
<td>55</td>
<td>20.2000 MNOPQRS</td>
</tr>
<tr>
<td>22</td>
<td>20.1850 MNOPQRS</td>
</tr>
<tr>
<td>32</td>
<td>20.1300 MNOPQRS</td>
</tr>
<tr>
<td>27</td>
<td>19.7800 NOPQRST</td>
</tr>
<tr>
<td>47</td>
<td>19.7050 NOPQRST</td>
</tr>
<tr>
<td>58</td>
<td>19.3650 NOPQRST</td>
</tr>
<tr>
<td>36</td>
<td>19.3400 NOPQRST</td>
</tr>
<tr>
<td>48</td>
<td>17.7650 NOPQRST</td>
</tr>
<tr>
<td>44</td>
<td>17.5650 NOPQRST</td>
</tr>
<tr>
<td>1</td>
<td>17.1050 NOPQRST</td>
</tr>
<tr>
<td>3</td>
<td>16.4200 NOPQRST</td>
</tr>
</tbody>
</table>
CUADRO No.B6 Comparación de medias para el carácter de peso del grano de cinco panojas

<table>
<thead>
<tr>
<th>TRATAMIENTO</th>
<th>MEDIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>319.50</td>
</tr>
<tr>
<td>37</td>
<td>294.5</td>
</tr>
<tr>
<td>56</td>
<td>277.00</td>
</tr>
<tr>
<td>42</td>
<td>258.00</td>
</tr>
<tr>
<td>36</td>
<td>252.00</td>
</tr>
<tr>
<td>62</td>
<td>250.00</td>
</tr>
<tr>
<td>59</td>
<td>227.00</td>
</tr>
<tr>
<td>44</td>
<td>226.50</td>
</tr>
<tr>
<td>4</td>
<td>224.50</td>
</tr>
<tr>
<td>25</td>
<td>224.00</td>
</tr>
<tr>
<td>35</td>
<td>224.00</td>
</tr>
<tr>
<td>28</td>
<td>216.00</td>
</tr>
<tr>
<td>11</td>
<td>212.00</td>
</tr>
<tr>
<td>14</td>
<td>212.00</td>
</tr>
<tr>
<td>30</td>
<td>212.00</td>
</tr>
<tr>
<td>26</td>
<td>204.50</td>
</tr>
<tr>
<td>67</td>
<td>202.00</td>
</tr>
<tr>
<td>16</td>
<td>193.00</td>
</tr>
<tr>
<td>24</td>
<td>192.00</td>
</tr>
<tr>
<td>55</td>
<td>192.00</td>
</tr>
<tr>
<td>61</td>
<td>187.00</td>
</tr>
<tr>
<td>5</td>
<td>183.50</td>
</tr>
<tr>
<td>27</td>
<td>177.00</td>
</tr>
<tr>
<td>57</td>
<td>177.00</td>
</tr>
<tr>
<td>12</td>
<td>177.00</td>
</tr>
<tr>
<td>19</td>
<td>175.50</td>
</tr>
<tr>
<td>38</td>
<td>174.50</td>
</tr>
<tr>
<td>33</td>
<td>174.50</td>
</tr>
<tr>
<td>23</td>
<td>172.00</td>
</tr>
<tr>
<td>32</td>
<td>169.50</td>
</tr>
<tr>
<td>46</td>
<td>169.50</td>
</tr>
<tr>
<td>64</td>
<td>169.50</td>
</tr>
<tr>
<td>60</td>
<td>169.50</td>
</tr>
<tr>
<td>18</td>
<td>167.00</td>
</tr>
<tr>
<td>58</td>
<td>167.00</td>
</tr>
<tr>
<td>22</td>
<td>159.50</td>
</tr>
<tr>
<td>1</td>
<td>159.50</td>
</tr>
<tr>
<td>68</td>
<td>159.50</td>
</tr>
<tr>
<td>49</td>
<td>157.00</td>
</tr>
<tr>
<td>20</td>
<td>155.00</td>
</tr>
<tr>
<td>17</td>
<td>154.50</td>
</tr>
<tr>
<td>6</td>
<td>149.50</td>
</tr>
<tr>
<td>21</td>
<td>149.00</td>
</tr>
<tr>
<td>45</td>
<td>147.00</td>
</tr>
<tr>
<td>43</td>
<td>144.50</td>
</tr>
<tr>
<td>10</td>
<td>144.50</td>
</tr>
<tr>
<td>63</td>
<td>142.00</td>
</tr>
<tr>
<td>51</td>
<td>140.00</td>
</tr>
<tr>
<td>15</td>
<td>137.00</td>
</tr>
<tr>
<td>54</td>
<td>137.00</td>
</tr>
<tr>
<td>13</td>
<td>136.50</td>
</tr>
<tr>
<td>41</td>
<td>134.50</td>
</tr>
<tr>
<td>8</td>
<td>132.00</td>
</tr>
<tr>
<td>7</td>
<td>130.00</td>
</tr>
<tr>
<td>40</td>
<td>129.00</td>
</tr>
<tr>
<td>29</td>
<td>127.00</td>
</tr>
<tr>
<td>65</td>
<td>125.00</td>
</tr>
<tr>
<td>50</td>
<td>124.50</td>
</tr>
<tr>
<td>47</td>
<td>124.50</td>
</tr>
<tr>
<td>31</td>
<td>122.00</td>
</tr>
<tr>
<td>9</td>
<td>112.00</td>
</tr>
<tr>
<td>2</td>
<td>109.50</td>
</tr>
<tr>
<td>53</td>
<td>107.00</td>
</tr>
<tr>
<td>3</td>
<td>104.50</td>
</tr>
<tr>
<td>52</td>
<td>102.00</td>
</tr>
<tr>
<td>48</td>
<td>100.00</td>
</tr>
<tr>
<td>39</td>
<td>97.00</td>
</tr>
<tr>
<td>69</td>
<td>94.50</td>
</tr>
<tr>
<td>66</td>
<td>72.00</td>
</tr>
</tbody>
</table>
CUADRO No. B7 Comparación de medias para el carácter de rendimiento

<table>
<thead>
<tr>
<th>TRATAMIENTOS</th>
<th>MEDIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>7387.500</td>
</tr>
<tr>
<td>19</td>
<td>6956.250</td>
</tr>
<tr>
<td>9</td>
<td>6453.125</td>
</tr>
<tr>
<td>34</td>
<td>6390.625</td>
</tr>
<tr>
<td>35</td>
<td>5984.375</td>
</tr>
<tr>
<td>28</td>
<td>5934.375</td>
</tr>
<tr>
<td>12</td>
<td>5731.250</td>
</tr>
<tr>
<td>64</td>
<td>5668.750</td>
</tr>
<tr>
<td>60</td>
<td>5646.875</td>
</tr>
<tr>
<td>68</td>
<td>5596.875</td>
</tr>
<tr>
<td>30</td>
<td>5559.375</td>
</tr>
<tr>
<td>44</td>
<td>5534.375</td>
</tr>
<tr>
<td>42</td>
<td>5531.250</td>
</tr>
<tr>
<td>8</td>
<td>5521.875</td>
</tr>
<tr>
<td>38</td>
<td>5509.375</td>
</tr>
<tr>
<td>36</td>
<td>5466.875</td>
</tr>
<tr>
<td>6</td>
<td>5209.375</td>
</tr>
<tr>
<td>62</td>
<td>5125.000</td>
</tr>
<tr>
<td>53</td>
<td>5037.500</td>
</tr>
<tr>
<td>59</td>
<td>5006.250</td>
</tr>
<tr>
<td>31</td>
<td>4956.250</td>
</tr>
<tr>
<td>46</td>
<td>4937.500</td>
</tr>
<tr>
<td>23</td>
<td>4893.750</td>
</tr>
<tr>
<td>1</td>
<td>4837.500</td>
</tr>
<tr>
<td>24</td>
<td>4790.625</td>
</tr>
<tr>
<td>33</td>
<td>4784.375</td>
</tr>
<tr>
<td>16</td>
<td>4771.875</td>
</tr>
<tr>
<td>45</td>
<td>4646.875</td>
</tr>
<tr>
<td>49</td>
<td>4618.750</td>
</tr>
<tr>
<td>4</td>
<td>4600.000</td>
</tr>
<tr>
<td>14</td>
<td>4568.750</td>
</tr>
<tr>
<td>15</td>
<td>4450.000</td>
</tr>
<tr>
<td>57</td>
<td>4437.500</td>
</tr>
<tr>
<td>37</td>
<td>4387.500</td>
</tr>
<tr>
<td>69</td>
<td>4281.250</td>
</tr>
<tr>
<td>5</td>
<td>4237.500</td>
</tr>
<tr>
<td>10</td>
<td>4225.500</td>
</tr>
<tr>
<td>61</td>
<td>4159.375</td>
</tr>
<tr>
<td>20</td>
<td>4150.000</td>
</tr>
<tr>
<td>51</td>
<td>4087.500</td>
</tr>
<tr>
<td>39</td>
<td>4075.000</td>
</tr>
<tr>
<td>41</td>
<td>4046.875</td>
</tr>
<tr>
<td>56</td>
<td>4037.500</td>
</tr>
<tr>
<td>65</td>
<td>4012.500</td>
</tr>
<tr>
<td>54</td>
<td>3990.625</td>
</tr>
<tr>
<td>17</td>
<td>3950.000</td>
</tr>
<tr>
<td>11</td>
<td>3840.625</td>
</tr>
<tr>
<td>3</td>
<td>3718.750</td>
</tr>
<tr>
<td>48</td>
<td>3609.375</td>
</tr>
<tr>
<td>52</td>
<td>3568.750</td>
</tr>
<tr>
<td>32</td>
<td>3553.125</td>
</tr>
<tr>
<td>63</td>
<td>3528.125</td>
</tr>
<tr>
<td>50</td>
<td>3518.750</td>
</tr>
<tr>
<td>18</td>
<td>3465.625</td>
</tr>
<tr>
<td>47</td>
<td>3431.250</td>
</tr>
<tr>
<td>27</td>
<td>3340.625</td>
</tr>
<tr>
<td>29</td>
<td>3259.375</td>
</tr>
<tr>
<td>55</td>
<td>3190.625</td>
</tr>
<tr>
<td>21</td>
<td>3162.500</td>
</tr>
<tr>
<td>25</td>
<td>3156.250</td>
</tr>
<tr>
<td>58</td>
<td>3068.750</td>
</tr>
<tr>
<td>22</td>
<td>3031.250</td>
</tr>
<tr>
<td>66</td>
<td>2875.000</td>
</tr>
<tr>
<td>7</td>
<td>2868.750</td>
</tr>
<tr>
<td>2</td>
<td>2815.625</td>
</tr>
<tr>
<td>13</td>
<td>2740.625</td>
</tr>
<tr>
<td>40</td>
<td>2456.250</td>
</tr>
<tr>
<td>67</td>
<td>2209.375</td>
</tr>
<tr>
<td>43</td>
<td>2181.250</td>
</tr>
</tbody>
</table>