Uso de Substancias Húmicas y Ácido Indolacético como Bioestimulantes en la Producción de Raíz de Tomate

Por:

ANA MARÍA CORTEZ LÓPEZ

TESIS

Presentada como requisito parcial para obtener el título de:

INGENIERO AGRICOLA Y AMBIENTAL

Buenavista, Saltillo, Coahuila, México

Noviembre del 2016
UNIVERSIDAD AUTÓNOMA AGRARIA ANTONIO NARRO
DIVISIÓN DE INGENIERÍA
DEPARTAMENTO DE CIENCIAS DEL SUELO

Uso de Substancias Húmicas y Ácido Indolacético como Bioestimulantes en la Producción de Raíz de Tomate

Por:
ANA MARÍA CORTEZ LÓPEZ

TESIS
Que somete a la consideración del H. Jurado como requisito para obtener el título de:

INGENIERO AGRÍCOLA Y AMBIENTAL

Aprobada por el Comité de Asesoría:

Dr. Rubén López Cervantes
Asesor Principal

MC. Fidel Maximiano Peña Ramos
Coasesor

Dr. Edmundo Peña Cervantes
Coasesor

Dr. Luis Samaniego Moreno

Coordinador de la división de Ingeniería

Buenavista, Saltillo, Coahuila, México. Noviembre 2016
AGRADECIMIENTOS

En primer lugar dios por la vida, permitiéndome recorrer este camino de lucha y sabiduría en compañía de mi familia y seres queridos, por todas los conocimientos, experiencias y por las personas que cruzo en mi camino haciendo más fácil mi transcurso.

A mis padres J. Jesús Cortez Miranda y María López Pérez, por el esfuerzo que realizan a diario para que no me falte nada, por su confianza, consejos, abrazos y apoyo incondicional en este nuevo logro.

A mi Alma Terra Mater, la Universidad Autónoma Agraria Antonio Narro que me abrió las puertas de sus instalaciones para cumplir un sueño “ser buitre por siempre” brindándome los conocimientos y prepararme para los próximos anhelos que hoy inician.

A mis profesores, por los conocimientos y herramientas que me formaron en una persona ética, con valores y profesional para enfrentar la vida laboral en la agronomía.

Al Dr. Rubén López Cervantes, Dr. Edmundo Peña Cervantes y Fidel Maximiliano Peña Ramos, por su disponibilidad y asesoría en mi trabajo de investigación de tesis.

A mis amigos y compañeros de carrera, en especial a Erhic Silva Bohorquez por su apoyo incondicional siempre, a Lisania, Cardona, Daniel, Oliva, Lupita, Angeles, Keren, Ivon, Minerva, Lariza, Israel, Gabriela, Andrea y las dos Jesicas, por las experiencias, alegrías, buenos y malos momentos que influyeron en mi formación como persona.

¡Gracias!
DEDICATORIA

Este título está dedicado principalmente a Dios, porque tú lo hiciste posible, porque nunca me dejaste sola y me enseñaste a recorrer los caminos buenos y malos de tu mano.

A mi padre J. Jesús Cortez Miranda, por darme la vida, cuidarme, por preocuparte siempre por mí, por los consejos, abrazos y frases de aliento que me animaron en cada paso que daba para poder lograr este sueño que hoy cumplo.

A mi madre María López Pérez, por los consejos, los abrazos, cuidados y oraciones para que yo estuviera bien, por enseñarme lo bueno de lo malo y apoyarme en mis decisiones.

Papá, Mamá, hoy quiero decirles, valió la pena todos sus sacrificios, este título es para ustedes con todo mi corazón.

A mis hermanos Sanjuana Cortez López por apoyarme para que pudiera estudiar y por darme una sobrina hermosa, Jeronimo Cortez López por enseñarme a no rendirse con los obstáculos de la vida y echarle ganas siempre y Fernando Cortez López, ser el más pequeño no fue obstáculo para enseñarme a perdonar y cuidar de la familia siempre, hermanitos este título está dedicado a ustedes por las conversaciones de aliento y por las alegrías en esta trayectoria.

A mis abuelitos Sara Pérez Reyes, Lorenza Miranda Olguín, Pedro López Trujillo (D.E.P) y Delfino Cortez Ríos (D.E.P) que me brindaron sus consejos y motivación para cumplir mis sueños, por cuidarme desde el cielo donde quiera que ande.

A mis tíos Ma. Esperanza López Pérez que ha sido como una segunda mamá cuidándome con sus consejos y ayudándome con lo poco que tenía para que yo estuviera bien y Salvador Cortez Miranda, que confió en mí y me apoyo a lo largo de la carrera brindándome motivándome a seguir con mis sueños.
Índice de Contenido

I. INTRODUCCIÓN .. 1

II. OBJETIVOS .. 3

 2.1 General .. 3

 2.2 Específicos .. 3

III. HIPÓTESIS ... 3

IV. REVISIÓN DE LITERATURA .. 4

 4.1 Generalidades del Tomate ... 4

 4.2 Taxonomía y Morfología .. 4

 4.3 Requerimientos climáticos del tomate ... 7

 4.4 Nutrientes en la planta .. 8

 4.5 Densidad de siembra y población .. 10

 4.6 Cosecha ... 11

 4.7 Reguladores de Crecimiento .. 12

 4.8 Ácido Indol-3-acético ... 13

 4.9 Sustancias Húmicas .. 15

 4.10 Ácidos Húmicos ... 16

 4.11 Ácidos Fulvicos ... 17

V. MATERIALES Y MÉTODOS ... 19

 5.1 Localización del Área Experimental ... 19

 5.2 Metodología ... 20

VI. RESULTADOS Y DISCUSIÓN .. 23

 6.1 Peso Fresco de Raíz en Plántula ... 23

 6.2 Peso Seco de Raíz en Plántula .. 24

 6.3 Peso Fresco de Follaje en Plántula ... 25

 6.4 Peso Seco de Follaje en Plántula .. 26

 6.5 Calcio Magnesio y Potasio en Plántula .. 27

 6.6 Hierro y Zinc en Plántula .. 28

 6.7 Peso Fresco, Peso Seco y Volumen de Raíz en Amarre de Fruto 29

 6.8 Cobre, Zinc, Hierro y Potasio en Raíz para Amarre de Fruto 30

 6.9 Calcio y Magnesio en Raíz para Amarre de Fruto ... 31
6.10 Diámetro Polar, Ecuatorial y Peso Fresco del Fruto ... 32
6.11 Firmeza y Grados Brix en Fruto ... 33
6.12 Discusión ... 34
VII. CONCLUSIÓN ... 36
VIII. LITERATURA CITADA ... 37
Índice de cuadros

Cuadro 1. Intervalos usuales para la composición elemental de las sustancias húmicas (Aiken, Mckaninght, Wershaw y Maccarthy, 1985) .. 18

Cuadro 2. Distribución de los tratamientos adicionados a tomate, variedad Caiman-Enza zaden ... 21

Cuadro 3. Fertilización química aplicada a tomate, variedad Caiman-Enza zaden ... 21

Cuadro 4. Análisis de varianza peso fresco de raíz en etapa de plántula, en tomate con la adición de sustancias húmicas y ácido indolacético 23

Cuadro 5. Análisis de varianza peso seco de raíz para plántula de tomate variedad Caiman-Enza zaden con la adición de sustancias húmicas y ácido indolacético ... 24

Cuadro 6. Análisis de varianza peso fresco de follaje para plántula de tomate variedad Caiman-Enza zaden con la adición de sustancias húmicas y ácido indolacético .. 25

Cuadro 7. Análisis de varianza peso seco de follaje para plántula de tomate variedad Caiman-Enza zaden .. 26
Índice de figuras

<table>
<thead>
<tr>
<th>Figura</th>
<th>Descripción</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figura 1</td>
<td>Estructura química del ácido indol-3-acetico</td>
<td>14</td>
</tr>
<tr>
<td>Figura 2</td>
<td>Modelo de la estructura química del ácido húmico</td>
<td>16</td>
</tr>
<tr>
<td>Figura 3</td>
<td>Muestra la estructura química del ácido fúlvico</td>
<td>17</td>
</tr>
<tr>
<td>Figura 4</td>
<td>Localización del área experimental</td>
<td>19</td>
</tr>
<tr>
<td>Figura 5</td>
<td>Peso fresco de raíz en plántula para el cultivo de tomate variedad Caiman-Enza zaden</td>
<td>23</td>
</tr>
<tr>
<td>Figura 6</td>
<td>Comportamiento del peso seco de raíz en plántula para el cultivo de tomate variedad Caiman-Enza zaden</td>
<td>24</td>
</tr>
<tr>
<td>Figura 7</td>
<td>Comportamiento del peso fresco de follaje en plántula para el cultivo de tomate variedad Caiman-Enza zaden</td>
<td>25</td>
</tr>
<tr>
<td>Figura 8</td>
<td>Comportamiento del peso seco de follaje en plántula para el cultivo de tomate variedad Caiman-Enza zaden</td>
<td>26</td>
</tr>
<tr>
<td>Figura 9</td>
<td>Porcentaje de calcio, magnesio y potasio en plántulas de tomate de la variedad Caiman-Enza zaden</td>
<td>27</td>
</tr>
<tr>
<td>Figura 10</td>
<td>Concentración de hierro y zinc en plántulas de la variedad Caiman-Enza zaden</td>
<td>28</td>
</tr>
<tr>
<td>Figura 11</td>
<td>Correlación de medias para las variables de peso fresco, peso seco y volumen de la raíz para la etapa de cosecha</td>
<td>29</td>
</tr>
<tr>
<td>Figura 12</td>
<td>Concentración (mg Kg⁻¹) de cobre, zinc, hierro y potasio en raíz, para la etapa de amarre de fruto</td>
<td>30</td>
</tr>
<tr>
<td>Figura 13</td>
<td>Calcio y Magnesio en raíz de tomate durante la etapa de amarre de fruto</td>
<td>31</td>
</tr>
<tr>
<td>Figura 14</td>
<td>Correlación del diámetro polar, ecuatorial y peso fresco del fruto de tomate de la variedad Caiman-Enza zaden</td>
<td>32</td>
</tr>
<tr>
<td>Figura 15</td>
<td>Firmeza y grados brix en el fruto de tomates de la variedad Caiman-Enza zaden</td>
<td>33</td>
</tr>
</tbody>
</table>
Resumen

Con el objetivo de determinar el uso de substancias húmicas como bioestímulantes, así como establecer la dosis optima que aumente la producción de raíz, se sembraron semillas de tomate de la variedad “Caimán-Enza zaden” en charolas germinadoras de plástico de 50 cavidades, cuando las plantas tenían cuatro hojas verdaderas se trasplantaron a macetas de 25 kg de un Calcisol en las cuales se les aplicaron nueve tratamientos con cinco repeticiones, se consideró al ácido indolacético como testigo absoluto, aplicándose a concentraciones de 0.0098 (IAA-1), 0.0196 (IAA-2) y 0.0294 mg L⁻¹ (IAA-3), los tratamientos a base de ácido fúlvico se suministraron a dosis de 0.0216 (AF-1), 0.0432 (AF-2) y 0.0648 mg L⁻¹ (AF-3), mientras que el ácido húmico se usó a 0.0114 mg L⁻¹ (AH-1), 0.0228 mg L⁻¹ (AH-2) y 0.0342 mg L⁻¹ (AH-3). Las variables que se analizaron fueron peso fresco y peso seco en raíz y follaje, así como los elementos Ca²⁺, Mg²⁺, Cu²⁺, Zn²⁺, Fe²⁺ y K⁺, presentes en la planta para etapa de plántula y amarre de fruto; en el fruto se evaluó diámetro polar, diámetro ecuatorial, sólidos disueltos totales, firmeza y peso fresco, en los cuales se observó que para las variables peso fresco y peso seco en plántula la mejor respuesta fue con el tratamiento AF-3, mientras que para la etapa de amarre de fruto fueron usando los tratamientos AH-2 y IAA-1. En las variables evaluadas del fruto se encontró que la firmeza y grados brix aumentan conforme incrementa la dosis aplicada del ácido fúlvico, mientras que en el ácido indolacético a menos grados brix mayor firmeza. En tanto se puede decir que la mejor respuesta en plántula es con el uso del tratamiento a base de ácido fúlvico en altas cantidades, mientras que en amarre de fruto es el ácido indolacético a baja dosis y el ácido húmico a mediana concentración.

Palabras clave: acido húmico; acido fúlvico; acido indolacético; bioestímulantes; auxinas.
I. INTRODUCCIÓN

La producción de tomate representa cerca del 33 por ciento de la producción hortícola mundial. El área de cultivo de esta hortaliza se ha incrementado en 18.8 por ciento, al pasar de 3,892,820 hectáreas a 4,643,957 hectáreas, los mayores productores son China, Estados Unidos, India y Turquía (Food and Agricultural Organization Statistical, FAOSTAT, 2016).

El cultivo del tomate, en México es de gran importancia, porque se produce durante todo el año; en los primeros meses, es cuando se genera el tope de producción nacional, en el estado de Sinaloa, que abastece al mercado nacional y la mitad del norteamericano. Durante el verano, la producción de los estados del centro y de Baja California, es la que abastecen la demanda interna y de exportación y finalmente, en los meses de agosto a diciembre, son otras entidades las que cubren la producción (Secretaría de Agricultura Gandera Desarrollo Rural Pesca y Alimentación, SAGARPA, 2010).

La gran mayoría de los trabajos de investigación, están consagrados a estudiar el efecto de diversos factores climáticos, del suelo y genéticos; sin embargo, muy pocos investigadores se han enfocado a determinar el efecto y funcionamiento de la raíz en la producción de cultivos. Lo que es conocido y de acuerdo con Castellanos (2011), es que la raíz sirve como sujeción o anclaje de la planta al suelo y tiene las funciones de absorción y transporte de agua y nutrimentos.

Por lo comentado, en los últimos cinco años, los investigadores se han dedicado a establecer el efecto de bioestimulantes en la producción agrícola y principalmente, los que influyen en la raíz, Saborio (2002), define a los bioestimulantes como substancias que, a pesar de no ser nutrimentos, pesticidas o reguladores de crecimiento, al ser adicionados en cantidades pequeñas generan un impacto positivo en la germinación, el desarrollo y crecimiento vegetativo; además, intervienen en la floración, el cuajado y/o
El consejo europeo de la industria de los bioestimulantes (EBIC- 2012), los define como sustancias y/o microorganismos que cuando se aplican a las plantas y/o a rizosfera estimulan los procesos naturales para aumentar la eficiencia y disponibilidad de los nutrientes, la tolerancia al estrés producido por factores abióticos y en la calidad de los cultivos; pero, no tienen acción directa sobre plagas, por lo tanto, dentro del marco regulatorio de los plaguicidas, y Calvo et al, (2014), los clasifican en ocho categorías: sustancias húmicas, materiales orgánicos complejos, elementos químicos benéficos, sales inorgánicas (incluyendo el fosfito), extractos de algas marinas, derivados de la quitina y el quitosán, antitranspirantes y aminoácidos libres.

En la actualidad, las Substancias Húmicas (SH) están clasificadas dentro de los bioestimulantes, y la Sociedad Internacional de Substancias Húmicas (2013), las define como una mezcla compleja y heterogénea de materiales orgánicos polidispersados, formados en suelo, sedimentos y aguas naturales por reacciones químicas y bioquímicas, durante la descomposición y transformación de plantas y restos de microorganismos (proceso denominado humificación). Las SH fortalecen el crecimiento de las plantas directamente a través de los efectos fisiológicos y nutricionales.

Con base en lo comentado de acuerdo con la Organización Americana de la Alimentación (FAO, 2002), las SH son capaces de favorecer la germinación de las semillas, la iniciación radicular y por consiguiente, la absorción de nutrientes. También, para el crecimiento general de las plantas, como: en brotes, biomasa de hojas e influyen positivamente en el aumento de la productividad global (Atiyeh et al, 2002).
II. OBJETIVOS

2.1 General

Determinar el uso de substancias húmicas como bioestímulantes en la producción de raíz de tomate.

2.2 Específicos

Establecer el tipo y dosis de substancias húmicas, que aumente la producción de raíz de tomate.

III. HIPÓTESIS

Las substancias húmicas, al considerarse como bioestímulantes, tienen efecto positivo en la raíz de tomate al aumentar su producción.
IV. REVISIÓN DE LITERATURA

4.1 Generalidades del Tomate

El tomate (Solanum lycopersicum L.) es originario de los Andes, importado a Europa en el siglo XVI. En la actualidad, esta planta es común en todo el mundo y se ha convertido en un cultivo de importancia económica (Paduchuri et al., 2010). Además, es uno de los cultivos más importantes en todo el mundo, utilizado como la hortaliza más difundidas en el mundo y la de mayor valor económico (Casierra y Aguilar, 2008).

Esta hortaliza ocupa el séptimo lugar en la producción de todo el mundo después del maíz, arroz, trigo, patatas, soja y yuca, alcanzando una producción mundial de alrededor de 160 millones de toneladas en una superficie cultivada de casi 4.8 millones de hectáreas en 2011 (FAOSTAT, 2016). En México la mayor producción de tomate se realiza en campo abierto, siendo Sinaloa el principal estado productor y exportador, actualmente casi la totalidad de exportación de tomate está dirigida a Estados Unidos y sólo una pequeña porción a Canadá (Castellanos, 2011).

4.2 Taxonomía y Morfología

El tomate es una planta herbácea perenne, pero generalmente se cultiva como anual en regiones templadas, ya que es asesinado por las heladas. Originalmente es una planta de crecimiento indeterminado, de producción continua de tres nodos entre cada inflorescencia, pero determinadas variedades han sido criadas en forma arbustiva permitiendo a la planta producir brotes laterales, las variedades de crecimiento determinado tiene menos de tres nodos entre inflorescencias con la terminación del tallo en una inflorescencia, la producción de frutas que son fácilmente máquina de cosecha y se cultiva principalmente para procesar (Renton, 2007).
El cultivo del tomate pertenece a la familia de las solanaceae, cuyo nombre botánico es *Solanum Lycopersicum L*. Según el Sistema Integrado de Información Taxonomica (ITIS), (Hanan y Mondragon, 2016), la clasificación aceptada para el jitomate (*Solanum Lycopersicum L.*) es la siguiente:

Reino: Plantae; Subreino: Traqueobionta (plantas vasculares); Superdivisión: Spermatophyta (plantas con semillas); División: Magnoliophyta (plantas con flor); Clase: Manoliopsida (dicotiledóneas); Subclase: Asteridae; Orden: Solanales.

Las decisiones a tomar en el manejo agronómico se relacionan con la fenología y la respuesta fisiológica a las variables ambientales. A continuación se describen brevemente los órganos de la planta, mismos que pueden resultar significativamente afectados por el manejo que se le dé al cultivo según (Castellanos, 2011).

Semilla: la semilla de tomate es de forma lenticular con dimensiones de aproximadamente 5 x 4 x 2 mm, la cual está constituida por el embrión, el endospermo y la testa o cubierta seminal. El embrión está formado por una yema apical, dos cotiledones, el hipocótilo y la radícula.

Raíz: el sistema radicular del tomate consta de una raíz principal y gran cantidad de ramificaciones en los primeros 30 cm de la capa del suelo. El cual tiene como funciones la absorción y el transporte de agua y nutrientes, así como la sujeción o anclaje de la planta al suelo.

La población de raíces finas se localiza predominantemente en la superficie del suelo, es altamente variable y más efímera que las raíces gruesas, y responde activamente a los cambios ambientales. Se acepta que las raíces finas están directamente involucradas y son esenciales en la absorción de agua y nutrientes minerales de la solución del suelo. Algunos estudios de las tasas de uso de agua de las plantas en el campo indican sin embargo que las raíces gruesas también son activas en la absorción de agua, particularmente del agua profunda. Las raíces gruesas son importantes además en el almacenamiento de
agua, carbohidratos, minerales, mucilagos y otras sustancias, que juegan un importante papel en el control de la fenología de las especies, y en la recuperación posterior a varios tipos de estrés como la poda, los incendios, la herbivoría y las enfermedades (Gutiérrez, 2016).

Tallo: está cubierto por vellosidades que salen de la epidermis, mismas que expiden un aceite oloroso que al desprenderlo sirven de protección al tallo, el diámetro se encuentra entre dos a cuatro cm y el porte puede ser de crecimiento determinado (tallos que al llegar a cierto número de ramilletes detienen su crecimiento) e indeterminado (tallos que no detienen su crecimiento).

Hoja: tiene un eje central o peciolo, que se utiliza para el monitoreo nutrimental y de este eje salen pequeñas “hojitas” llamadas foliolos. Se denomina simpodio a un sector del tallo compuesto de tres hojas y un ramillete floral para el caso de las variedades de crecimiento indeterminado. Una hoja típica del tomate alcanza hasta 50 cm de largo, con un gran foliolo terminal y hasta ocho grandes foliolos laterales, que pueden, a su vez, ser compuestos.

Flor: las flores son pequeñas, pedunculadas, de color amarillo y forman corimbos axilares. El cáliz tiene cinco sépalos, la corola cinco pétalos que conforman un tubo pequeño ya que esta soldada inferiormente, los cinco estambres están soldados en estilo único que a veces sobresale de los estambres, el ovario contiene muchos óvulos. El número de flores depende del tipo de tomate. En tomates de grueso calibre el ramillete tiene de cuatro a seis flores; en tomates de calibre mediano aumenta de 10 a 12 flores por ramillete y en los tomates tipo cereza que es extraño que se encuentren hasta 100 flores por racimo.

Fruto: tiene dos o más lóculos, los cuales se desarrollan a partir de un ovario de cinco a diez miligramos y alcanza un peso final en la madurez que oscila entre los cinco y 100 g, en función de la variedad y las condiciones de desarrollo. Consta de una cubierta llamada cáscara, epidermis, piel o cutícula.
Las semillas se encuentran en los lóculos (espacios gelatinosos del centro), pegados a la parte carnosa.

4.3 Requerimientos climáticos del tomate

A la planta del tomate le favorece el clima caliente, pues a mayor temperatura mayor será la velocidad de crecimiento. Sin embargo, bajo condiciones de baja luminosidad las temperaturas diurnas y nocturnas se deben mantener bajas, de lo contrario se obtendrán plantas débiles con floración raquítica debido a que la energía proporcionada por la fotosíntesis será inadecuada para la velocidad de crecimiento (León, 2001).

El crecimiento y desarrollo del tomate comprende de tres a cinco etapas, las cuales tienen una duración diferente dependiendo del ambiente y las técnicas de producción, pero sobre todo, dependiendo del hábito de crecimiento (determinado o indeterminado). En igualdad de condiciones lo normal es que la duración de cada etapa sea mayor en las variedades indeterminadas. Las etapas de germinación, crecimiento, floración y fructificación se dan mejor bajo un ritmo alternante de temperatura entre el día y la noche que a una temperatura constante (Maroto, 1986).

Las temperaturas clave en el cultivo del tomate son: en la etapa de germinación la mínima es de 10ºC, la máxima de 35ºC y la óptima varía entre 25 y 29 º C. En la etapa de desarrollo la temperatura diurna debe estar entre 18 y 23ºC, mientras que la nocturna entre 16 y 18ºC. La temperatura de las raíces debe mantenerse entre 22 a 25ºC (León, 2001).

En cuanto a la radiación solar, la planta de tomate se desarrolla en épocas o condiciones de baja irradiación, el ciclo vegetativo se prolonga significativamente, la planta se alarga y el tallo es delgado. Cuando se combinan baja irradiación con temperatura alta, llegando la planta a presentar hasta 18 hojas antes del primer racimo (Castro, 1992).

Las bajas intensidades de luz provocan menor crecimiento, plantas débiles y por lo tanto más susceptibles a patógenos y a los cambios bruscos del
ambiente. Esta condición ambiental provoca también el aborto de flores y la malformación de frutos, causado por la disminución del crecimiento del tubo polínico. Cuando se tienen días cortos (menores de 12 horas) el ciclo vegetativo se alarga y el inicio de fructificación es tardío (Atherton y Harris, 1986).

Cuando la irradiaición es igual o superior al óptimo no afecta el desarrollo del tallo, pero para valores por debajo del óptimo se induce una elongación del tallo, siendo estos muy delgados y débiles con una mayor proporción de tejido parenquímático.

La humedad relativa favorable para el cultivo de tomate oscila alrededor de 50 a 60 por ciento, cuando es más alta las anteras se hinchan y el polen no puede liberarse y para ser depositado en el estigma, en consecuencia no hay formación de fruto (Guenkov, 1974).

El rango de humedad relativa ideal para el cultivo de tomate bajo invernadero es de 60 a 70 por ciento; los excesos se pueden controlar con ventilación, aumentando la temperatura y controlando los riegos. La falta de humedad relativa se controla con la frecuencia de riegos o nebulización de agua (Rodríguez et al, 1989).

Cuando el ambiente dentro del invernadero es muy seco los órganos masculinos y femeninos de la flor se deshidratan y por ello no se produce la fecundación, por el contrario un ambiente muy húmedo ocasiona el aglomeramiento de polen lo que trae consigo fallas en la fecundación (Nuez, 2001).

4.4 Nutrientes en la planta

Los iones alcanzan la zona de absorción de la raíz mediante difusión a través de la solución salina del suelo, son arrastrados por el movimiento del agua hacia la raíz o entran en contacto con las zonas de absorción a medida que la raíz crece. Los nutrientes minerales se distribuyen por toda la planta a través del xilema, impulsados por la corriente ascendente de agua que genera
el flujo de transpiración. Así, de la misma forma que el agua debe transportarse radialmente en la raíz para alcanzar el xilema, los iones siguen un camino similar. Al igual que el agua, el transporte radial de iones por la raíz tiene lugar a través del apoplasto y del simplasto, llegando a formar parte de la composición mineral de la planta.

La precisa composición mineral de las plantas es de suma importancia cuando se considera a ésta como fuente alimenticia pues la ausencia o abundancia de nutrientes pueden afectar su valor alimenticio. La técnica usual, para conocer los elementos que forman parte de los tejidos y órganos de las plantas es convertir a éstas en cenizas, empleando para ellos altas temperaturas con las que se extrae toda la humanidad de los tejidos, una vez obtenida la materia seca ésta se convierte en polvo o ceniza que pasa a ser analizada en laboratorio.

La participación de los elementos nutricionales en las plantas se realiza activamente en los procesos esenciales para las plantas (Montoya et al, 2008), así:

- Como materiales de construcción para la célula vegetal y todos los organelos que la conforman, además de proteínas, ácidos nucleicos, aminoácidos.
- Intervienen en procesos activos celulares, como crecimiento y desarrollo de estas.
- Regulación de las características de permeabilidad de las membranas, participación activa en procesos metabólicos, fotosíntesis, respiración, apertura y cierre estomático. Efectos catalíticos, sinergismo y electrostáticos.
- El nitrógeno tiene mucha importancia en la formación de aminoácidos, proteínas, ácidos nucleicos, vitaminas y clorofila.
- El fósforo es fundamental en los procesos de intercambio energético, así como también es parte constituyente de los ácidos nucleicos y metabolitos fosforilados del metabolismo primario y secundario.
- El potasio es un elemento vital en la fotosíntesis y respiración, transporte y adecuación de fotoasimilados, así como en los procesos de apertura y cierre estomático.
- El calcio mantiene la estructura de la parte celular y es un catalizador de algunas enzimas, regula la permeabilidad de la membrana celular.
- El magnesio hace parte de la estructura de la clorofila, es un estabilizador del ATP y activador de muchas enzimas.

El contenido de nutrientes esenciales en los tejidos vegetales viene determinado por varios factores, entre los que podemos destacar: a) la dotación génica de la planta, b) la disponibilidad de nutrientes en el suelo o medio de cultivo, y c) el momento fenológico o edad de la planta y el órgano o tejido vegetal que se considere (Gárate y Bonilla, 2000).

La edad fisiológica de la planta así como de la parte que se muestrea son, después del aporte de nutrientes, los factores más importantes que afectan al contenido de nutrientes minerales en el tejido vegetal. Normalmente hay un descenso del contenido mineral en peso seco de la planta según ésta va envejeciendo, con excepción del Ca y, a veces, el B y el Fe. Esta tendencia a la baja está provocada principalmente por el aumento relativo del porcentaje de peso seco del material estructural, pared celular y lignina, y de los compuestos de reserva, como el almidón.

4.5 Densidad de siembra y población

Los marcos de plantación son influenciados por el sistema de cultivo, mejora las labores de culturales, busca un equilibrio entre desarrollo de follaje y captación de radiación solar del follaje. Las técnicas más utilizadas son el establecimiento de líneas de cultivo con separaciones de 1.8 a 2.5 m. una de otra con pasillos de 0.8 a 1.6 m. lo que permite agilizar los trabajos propios del cultivo. El marco de plantación en el caso de injertos es importante para desarrollar de dos a tres tallos lo que da un mayor vigor y desarrollo. Se optimiza el volumen de sustrato utilizado. El sistema de producción basado en
altas densidades de población por unidad de superficie (de 10 a 16 plantas/m²) concentra la producción en breves intervalos de tiempo en que los precios de venta son elevados, la desventaja es el riesgo fitosanitario (Nuño, 2007).

Las densidades de plantación que se recomiendan van de dos a tres plantas/m². Dependiendo del genotipo y de las condiciones ambientales del invernadero. Por otro lado a mayor densidad de población, mayor será la humedad relativa que se genera en el interior del invernadero y mayores serán los riesgos de enfermedades fungosas, además de que el costo de producción se dispara por un mayor uso de mano de obra y un mayor consumo de fertilizantes. Por ello no es recomendable incrementar la densidad de plantación más allá de las tres plantas/m² y en algunos ambientes muy húmedo, con severos problemas de *Botrytis*, esta debe reducirse incluso a solo dos plantas/m², se sacrifica un poco el rendimiento, pero se consigue una mayor sanidad del cultivo (Castellanos, 2011).

4.6 Cosecha

Los tomates destinados para el mercado de consumo fresco son cosechados a mano. La mayoría de los tomates son cosechados en el estado de maduración conocido como estrella o rayado, etapa de color dos (United States Department of Agriculture, USDA, 1991), aunque algunos pocos son cosechados en el estado cambiante (etapa de color tres) o en el estado de color rosa (etapa de color cuatro). Los tomates verdes inmaduros, presentaran problemas en la maduración, la cual será muy irregular y serán de baja calidad, aunque los tomates cosechados en la etapa fisiológica de verde maduro, lograrán madurar adecuadamente (Cantwell y Kasmire, 2002). Los tomates madurados en la planta deberán de ser cosechados cuando alcancen el color “rayado” o cambiante” (USDA, 1991), para asegurar un mejor desarrollo del color y de la calidad. Los tomates en la etapa de “cambiante” o “rayado” presentan gel en el espacio interlocular y un color rosado en su interior. Dichas características aseguran su maduración normal (Suslow y Cantwell, 2009).
Estos frutos pueden manejarse y transportarse más fácilmente que los que tiene más color rojo, y por lo general tienen un precio as alto que los de color avanzado. Si los tomates están programados para su maduración en la planta, estas deberán cosecharse continuamente y deben seguirse los patrones de maduración. Durante el pico de producción de la temporada, se recomienda cosechar todos los días. Para prevenir la dispersión de enfermedades e insectos, se recomienda retirar continuamente todos los tomates con daños, enfermedades y deformaciones (Castellanos, 2011).

Los tomates deben cortarse de la planta mediante un doblez cuidadoso en la zona de abscisión evitando jalonearlo ya que esto causa daño y rasgaduras tanto al fruto como a la planta. Un manejo inadecuado nos traerá como resultado un daño visible o latente en ambos. Los frutos nunca deben empacarse apretados y mantenerlos al sol durante periodos prolongados. De acuerdo al tipo de tomate, algunas veces se cosecha todo el racimo, otras se deja el cáliz pegado al fruto, en ambos casos se requiere hacer un corte cuidadoso y contar con herramienta en buen estado y desinfectadas. La cuadrilla de corte debe familiarizarse con la gráfica de colores que indican madurez, esta deberá también ilustrarse con los efectos que no deben mostrar los frutos cuando se envían al empaque. Dado que el tomate generalmente es cosechado considerando el color, la cuadrilla debe familiarizarse con el estado de madurez mínimo aceptable (Siller et al, 2002).

4.7 Reguladores de Crecimiento

El desarrollo de las plantas ocurre a través de los procesos de crecimiento y diferenciación. El primero incluye cambios cuantitativos, como aumento de la hoja, mientras que el segundo involucra cambios cualitativos, como la transformación de células vegetativas a productivas para que se dé el desarrollo mencionado, la planta utiliza diversos insumos que toma del aire o del suelo, como es agua, nutrientes y gases así como aquellos que son sintetizados por
las células: vitaminas, azucares, proteínas y hormonas, entre otros (Andrade, 1996).

De los componentes químicos en las plantas, las hormonas tienen una función específica y característica de que actúan fisiológicamente a concentraciones muy bajas (10 microgramos/gramo) y regulan procesos de crecimiento y/o diferenciación (Weaver, 1990). Dentro de este grupo podemos diferenciar entre las que son producidas por la planta y aquellas de origen sintético. Las que se encuentran de forma natural en las plantas se denominan fitohormonas u hormonas vegetales. Las Hormonas de mayor importancia en el crecimiento y desarrollo de las plantas son: Auxinas, Giberelinas y Citoquininas (Montoya et al, 2008) y son consideradas como fitohormonas.

El efecto producido por las auxinas en el crecimiento ha sido objeto de numerosos estudios. Además de esta acción sobre el crecimiento, las auxinas influyen de forma decisiva en procesos como la división celular del cambium, la diferenciación vascular, la formación de raíces adventicias, la dominancia apical y el desarrollo de los frutos (Ázcon y Talon, 2008). Por ende señala que las auxinas tienen un papel fundamental en la formación de las raíces laterales y adventicias, y son necesarias específicamente para las divisiones asimétricas iniciales que dan origen al primordio de la raíz lateral.

Las fitohormonas son los compuestos naturales que se forman en los tejidos vegetales y que regulan un proceso; además que pueden ejercer efecto en el sitio de producción o en otros sitios. En general el ácido indolacético es la principal fitohormona que se utiliza como biorregulador en la agricultura (Andrade, 1996).

4.8 Ácido Indol-3-acético

La primera hormona descubierta en las plantas es la auxina. Una auxina natural en las plantas bien conocida es el ácido indol-3-acético, que se produce de forma endógena en el meristemo apical del brote y puede ser rápidamente transportado a las raíces a través del floema. Las raíces laterales se originan a
partir de células pericycle maduros, que no se dividen dentro de la raíz de los padres. Las señales de las auxina desencadenan grupos de periciclo celular para volver a entrar en el ciclo celular mitótico y establecen las raíces laterales (Casimiro, et al. 2001).

Entre los reguladores del crecimiento vegetal, las auxinas, y en especial el ácido indol-3- acético, son consideradas de mayor importancia fisiológica según Torres, et al, (2000), y se ha demostrado que las mismas desempeñan un papel importante en el desarrollo de las raíces de las plantas. De esta manera se logra también aumentar la absorción de agua y minerales, lo cual contribuye a un mejor crecimiento y desarrollo del cultivo. La germinación de semillas y el crecimiento de plántulas pueden ser controlados por la aplicación exógena de reguladores de crecimiento vegetal (RCV) en concentraciones fisiológicas que pueden actuar como promotoras e inhibidoras de ambos procesos (Asha et al, 1979).

Figura 1. Estructura química del ácido indol-3-acético

Su estructura química básica, se compone de un indol, por lo que es fácil encontrar en las plantas otros compuestos con estructura similar (Figura 1). Hoy en día se encuentran compuestos de similar acción sintetizados artificialmente (sustancias húmicas).

Para que una sustancia exhiba acción auxínica debe tener un radical acido o ser fácilmente convertible a él, un anillo aromático y uno a cuatro carbonos entre el carboxilo y el anillo (Rojas y Ramirez, 1993). Todas las auxinas sintéticas causan efectos parecidos pero cada producto individual tiene una
aplicación particular dentro de la regulación o acción auxinica (Taíz y Zeiger, 2006).

4.9 Sustancias Húmicas

Las sustancias húmicas, son aquellas que se encuentran con gran asiduidad en el medio natural, en suelo, sedimentos y aguas, (MacCarthy et al, 1990) son residuos de las plantas y animales en estado de descomposición, unidos a los productos sintetizados por los microorganismos del suelo y ciertos intermedios de dicha síntesis (Ayuso, 1995). Esta composición no es estable sino que presenta gran dinamismo, por lo que más que un grupo de sustancias difieren ligeramente su composición según las condiciones de su formación (Gallardo, 1980).

Las sustancias húmicas es materia orgánica completamente descompuesta y es fácilmente soluble en ácidos o bases. La Humificación es el proceso biológico de conversión de la materia orgánica en sustancias húmicas.

Las sustancias húmicas pueden subdividirse en tres fracciones principales:

- Los ácidos húmicos
- Ácidos fulvicos
- Huminas

Las sustancias húmicas juega un papel importante en la fisiología vegetal y nutrición mineral ya que exaltan la capacidad de absorción y translocación de nutrientes por las plantas, de manera que cada proceso de biosíntesis se ve optimizado con beneficios productivos y cualitativos (Ubbini, 1995). Hasta ahora, las sustancias húmicas se han venido empleando mayoritariamente como mejoradores de las condiciones de los suelos, para optimizar la estructura, permeabilidad, niveles de materia orgánica etc, de los suelos (Csicsor et al, 1994). De esta manera han aprovechado sus efectos indirectos sobre los cultivos, empleando dosis que van regidas por comerciantes (es decir
criterios económicos y no científicos) en los mercados logrando poca incidencia sobre las propiedades del suelo.

4.10 Ácidos Húmicos

Los ácidos húmicos (HAS) se denominan polidisperso debido a sus características químicas variables. De tres aspectos dimensionales estos compuestos de carbono complejo contiene compuestos que se consideran polímeros lineales flexibles, como bobinas con enlaces entrecruzados. En promedio, el 35% del ácido húmico (HA) son moléculas aromáticas (anillos de carbono), mientras que los componentes restantes son en forma de cadenas de carbono moléculas alifáticas (Figura 2). El tamaño molecular de los ácidos húmicos (HAS) variar desde aproximadamente 10,000 a 100,000 ácidos húmicos (AH) por lo cual estos polímeros se unen fácilmente a los minerales de las arcilla para formar complejos orgánicos estables (Pettit, 2004).

Los ácidos húmicos son insolubles en agua a condiciones acídicas (ph<2) pero solubles a valores mayores de pH.

Figura 2. Modelo de la estructura química del ácido húmico

Los ácidos húmicos (HAS) forman fácilmente sales con oligoelementos minerales inorgánicos. Un análisis de extractos de ácidos húmicos de origen natural (HAS) revelarán la presencia de más de 60 diferentes elementos minerales. Estos oligoelementos están obligados a añadir moléculas en una forma que pueden ser fácilmente utilizados por diversos organismos vivos.
Como resultado de los ácidos húmicos (HAS) se realiza el intercambio iónico y complejos metálicos (quela-<t>ntes</t>) en los sistemas (Pettit, 2004).

4.11 Ácidos Fulvicos

Los ácidos fúlvicos (AF) son una mezcla de ácidos orgánicos alifáticos débil y que son solubles en agua a todas las condiciones de pH (ácido, neutro y alcalino). Su composición y la forma es bastante variable. El tamaño de los ácidos fúlvicos (AF) son más pequeños que los húmicos (AH), con pesos moleculares que van desde aproximadamente 1,000 a 10,000. Los ácidos fúlvicos (AF) tienen un contenido de oxígeno doble que los ácidos húmicos (AH). Además tienen muchos grupos carboxilos (COOH) e hidroxilos (COH), (Figura 3) los ácidos fúlvicos de este modo (AF) son mucho más reactivos químicamente. La capacidad de intercambio de los ácidos fúlvicos (AF) es más del doble que la de los ácidos húmicos (AH). Esta alta capacidad de intercambio se debe al número total de grupos carboxilo (COOH) presentes, los número de grupos carboxilo presentes en los ácidos fúlvicos (AF) oscila desde 520 hasta 1,120 cmol (H+)/ kg (Pettit, 2004).

![Figura 3. Muestra la estructura química del ácido fúlvico](image-url)
Los análisis elementales de estos compuestos muestran que, en general, del 98 al 100 por ciento de sus elementos (libres de cenizas) son C, H, O, N, S y P. La distribución se puede ver en el Cuadro 1, cómo los ácidos fúlvicos presentan mayores contenidos de oxígeno y menores de carbono. De esa manera las relaciones O/C para los ácidos húmicos presentan un valor aproximado de 0.5, mientras que para ácidos fúlvicos este valor se centra en 0.7 (Aiken et al, 1985). Este hecho se traducirá, en un mayor contenido en grupos funcionales oxigenados en los ácidos fúlvicos.

Cuadro 1. Intervalos usuales para la composición elemental de las sustancias húmicas (Aiken, Mckaninght, Wershaw y Maccarthy, 1985)

<table>
<thead>
<tr>
<th>Elemento</th>
<th>Ácidos Húmicos (%)</th>
<th>Ácidos Fúlvicos (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbono</td>
<td>53.8-58.7</td>
<td>40.7-50.6</td>
</tr>
<tr>
<td>Oxígeno</td>
<td>32.8-38.3</td>
<td>39.7-49.8</td>
</tr>
<tr>
<td>Hidrógeno</td>
<td>3.2-6.2</td>
<td>3.8-7.0</td>
</tr>
<tr>
<td>Nitrógeno</td>
<td>0.8-4.3</td>
<td>0.9-3.3</td>
</tr>
<tr>
<td>Azufre</td>
<td>0.1-1.5</td>
<td>0.1-3.6</td>
</tr>
</tbody>
</table>

Como se puede observar la composición de las sustancias húmicas es muy similar a la composición química del ácido indolacético, llegándose a creer que se puede sustituir la aplicación del ácido indolacético por sustancias húmicas, motivo por el cual se llevó a cabo esta investigación.
V. MATERIALES Y MÉTODOS

5.1 Localización del Área Experimental

El presente trabajo de investigación, se realizó en el invernadero del área experimental del Departamento de Ciencias del Suelo, del Campus principal de la Universidad Autónoma Agraria Antonio Narro, ubicada en Buenavista, Saltillo, Coahuila, México a los 25° 21´ de Latitud Norte y los 101°02´ de Longitud Oeste, a la altitud de 1742 msnm (Figura 4).

Figura 4. Localización del área experimental
5.2 Metodología

El trabajo se realizó en dos etapas: la primera es la producción de plántula y para la segunda etapa se continuó con el crecimiento y desarrollo de la planta, hasta “amarre de fruto”.

La primera etapa consistió en imbibir semillas de tomate de la variedad “Caiman-Enza zaden”, en ácido indolacético, un ácido húmico y un ácido fúlvico durante 12 horas a 25 °C; esto con el fin de activar el embrión y disminuir el tiempo de emergencia. Realizado lo anterior fueron sembradas en charolas germinadoras de plástico de 50 cavidades y se empleó como sustrato la “Perlita” y cuando la plántula contenía un par de hojas verdaderas, se trasplantaron en macetas de poliestireno de 500 ml de capacidad y que contenían el mismo sustrato.

La segunda etapa consistió en trasplantar los tomates en macetas que contenían 25 kg de un Calcisol, cuyas características son: textura franco, con pH alcalino, siendo un suelo moderadamente bajo en carbonatos y libre de sales, cuenta con muy alto nivel de materia orgánica y tiene una conductividad hidráulica moderadamente baja al igual que en contenido de fósforo. En cuanto a la disponibilidad de micronutrientes resultó ser moderadamente bajo en fierro y cobre, en boro es muy pobre. Al tercer día de trasplante, se comenzó con la aplicación de solución nutritiva con las características descritas en el Cuadro 3. En intervalos de tres días y cada siete días se aplicaron los tratamientos, descritos en el Cuadro 2, hasta el amarre del fruto.
Cuadro 2. Distribución de los tratamientos adicionados a tomate, variedad Caiman-Enza zaden

<table>
<thead>
<tr>
<th>Número</th>
<th>Tratamiento</th>
<th>Dosis (mg L(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AIA-1 (testigo)</td>
<td>0.0098</td>
</tr>
<tr>
<td>2</td>
<td>AIA-2 (testigo)</td>
<td>0.0196</td>
</tr>
<tr>
<td>3</td>
<td>AIA-3 (testigo)</td>
<td>0.0294</td>
</tr>
<tr>
<td>4</td>
<td>AF-1</td>
<td>0.0216</td>
</tr>
<tr>
<td>5</td>
<td>AF-2</td>
<td>0.0432</td>
</tr>
<tr>
<td>6</td>
<td>AF-3</td>
<td>0.0648</td>
</tr>
<tr>
<td>7</td>
<td>AH-1</td>
<td>0.0114</td>
</tr>
<tr>
<td>8</td>
<td>AH-2</td>
<td>0.0228</td>
</tr>
<tr>
<td>9</td>
<td>AH-1</td>
<td>0.0342</td>
</tr>
</tbody>
</table>

AF= Ácido Fúlvico; AIA= Acido Indolacético; AH=Ácido Húmico

Cuadro 3. Fertilización química aplicada a tomate, variedad Caiman-Enza zaden

<table>
<thead>
<tr>
<th>Fertilizante</th>
<th>Dosis (g L(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrato de calcio</td>
<td>2</td>
</tr>
<tr>
<td>Fosfato mono amónico</td>
<td>1.5</td>
</tr>
<tr>
<td>Nitrato de potasio</td>
<td>1.25</td>
</tr>
<tr>
<td>Sulfato de magnesio</td>
<td>1.25</td>
</tr>
<tr>
<td>Sulfato ferroso</td>
<td>0.25</td>
</tr>
<tr>
<td>Sulfato de cobre</td>
<td>0.25</td>
</tr>
<tr>
<td>Sulfato de zinc</td>
<td>0.25</td>
</tr>
</tbody>
</table>

El trabajo se distribuyó de acuerdo a un Diseño Experimental Completamente al Azar, con nueve tratamientos y cinco repeticiones, el cual consistió en un análisis de varianza (ANVA) y la comparación de medias por el método de la diferencia mínima significativa de fisher (LSD). Con un nivel de significancia del 95 por ciento (p≤0.05). Para esto se empleó el paquete estadístico Statical Analysis System (S.A.S).
Las variables evaluadas en la primera etapa de plántula fueron: peso fresco de raíz (PFR), peso seco de raíz (PSR), peso fresco de follaje (PFF), peso seco de follaje (PSF); y algunos elementos, calcio (Ca), magnesio (Mg), cobre (Cu), zinc (Zn), hierro (Fe) y potasio (K), con el uso del “Espectrofotómetro de Absorción Atómica- Varian, modelo AA 5”.

Para la segunda etapa (amarre de fruto) las variables que se evaluaron en raíz fueron: peso fresco (PFR), peso seco (PSR), volumen (Vol) y los elementos, calcio (Ca), magnesio (Mg), cobre (Cu), zinc (Zn), hierro (Fe) y potasio (K), empleando el “Espectrofotómetro de Absorción Atómica- Varian, modelo AA 5”. Las variables analizadas en el fruto son: diámetro polar (DP), diámetro ecuatorial (DE), sólidos disueltos totales (°Brix), Firmeza (Fir) y peso (P).
VI. RESULTADOS Y DISCUSIÓN

6.1 Peso Fresco de Raíz en Plántula

Los tratamientos en el peso fresco de raíz para la etapa de plántula, realizaron efecto altamente significativo (Cuadro 4); y de manera gráfica se puede apreciar que los ácidos fúlvicos a mediana y alta concentración (AF-2 y AF-3), realizaron efecto similar, con una diferencia menor del seis por ciento respecto al ácido indolacético a baja dosis (IAA-1). La dosis que mayor efecto presentó, para los tratamientos a base de ácido humico, en esta variable, es 0.0228 mg L\(^{-1}\) correspondiente al tratamiento AH-2, para los tratamientos de ácido fulvico fue el tratamiento AF-2, el cual tuvo mayor respuesta en el peso fresco de raíz, respecto al ácido indolacético, que reacciona de mejor manera a bajas cantidades IAA-1.

Cuadro 4. Análisis de varianza peso fresco de raíz en etapa de plántula, en tomate con la adición de sustancias húmicas y ácido indolacético

<table>
<thead>
<tr>
<th>Fuente</th>
<th>DF</th>
<th>SC</th>
<th>CM</th>
<th>F</th>
<th>Pr(>F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo</td>
<td>8</td>
<td>1.97622560</td>
<td>0.24702820</td>
<td>4.45</td>
<td>0.0008**</td>
</tr>
<tr>
<td>Error</td>
<td>36</td>
<td>1.99828560</td>
<td>0.05550793</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total correcto</td>
<td>44</td>
<td>3.97451120</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figura 5. Peso fresco de raíz en plántula para el cultivo de tomate variedad Caiman-Enza zaden
6.2 Peso Seco de Raíz en Plántula

La variable peso seco de raíz en etapa de plántula, presentó efecto altamente significativo con los tratamientos aplicados (Cuadro 5.). De manera gráfica, se observa un aumento del 43.13 por ciento con el uso del tratamiento AF-3, sobre el IAA-3 y del 25 por ciento con el tratamiento AH-2. Se puede apreciar que los tratamientos a base de ácido indolacético reaccionan de mejor manera a dosis bajas de 0.0098 mg L⁻¹, mientras que los tratamientos a base ácido fúlvico presentan una mayor respuesta a la variable en dosis altas de 0.0648 mg L⁻¹ correspondiente al tratamiento AF-3, en los tratamientos de ácido húmico la mejor dosis fue 0.0228 mg L⁻¹.

Cuadro 5. Análisis de varianza peso seco de raíz para plántula de tomate variedad Caiman-Enza zaden con la adición de sustancias húmicas y ácido indolacético

<table>
<thead>
<tr>
<th>Fuente</th>
<th>DF</th>
<th>SC</th>
<th>CM</th>
<th>F</th>
<th>Pr>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo</td>
<td>8</td>
<td>0.00653120</td>
<td>0.00081640</td>
<td>4.30</td>
<td>0.0011**</td>
</tr>
<tr>
<td>Error</td>
<td>36</td>
<td>0.00683960</td>
<td>0.00018999</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total correcto</td>
<td>44</td>
<td>0.01337080</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figura 6. Comportamiento del peso seco de raíz en plántula para el cultivo de tomate variedad Caiman-Enza zaden
6.3 Peso Fresco de Follaje en Plántula

Para la variable de peso fresco de follaje en plántula, los tratamientos realizaron efecto altamente significativo (Cuadro 6). A manera de grafica se puede conocer que el tratamiento con mayor efecto sobre esta variable es el AF-3, con un 74.62 por ciento sobre el IAA-2 que se ubicó como el de menor rendimiento para esta variable. El tratamiento que mayor respuesta presenta del ácido indolacético es IAA-1, con un 50 por ciento arriba del AF-1, con un 28 por ciento para el AH-1, con 21 por ciento para el AH-2 y 35 por ciento para el AH-3.

Cuadro 6. Análisis de varianza peso fresco de follaje para plántula de tomate variedad Caiman-Enza zaden con la adición de sustancias húmicas y ácido indolacético

<table>
<thead>
<tr>
<th>Fuente</th>
<th>DF</th>
<th>SC</th>
<th>CM</th>
<th>F</th>
<th>Pr> F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo</td>
<td>8</td>
<td>3.36630480</td>
<td>0.42078810</td>
<td>7.22</td>
<td><0.0001**</td>
</tr>
<tr>
<td>Error</td>
<td>36</td>
<td>2.09793200</td>
<td>0.05827589</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total correcto</td>
<td>44</td>
<td>5.46423680</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figura 7. Comportamiento del peso fresco de follaje en plántula para el cultivo de tomate variedad Caiman-Enza zaden
6.4 Peso Seco de Follaje en Plántula

Los tratamientos en el peso seco de follaje para la etapa de plántula, realizaron diferencia altamente significativa (Cuadro 7). En la gráfica se aprecia que el tratamiento de AF-3 obtuvo una mayor respuesta sobre la variable de peso seco en follaje, con un 66.67 por ciento arriba de IAA-2. Los tratamientos de ácido húmico a baja y mediana concentración (AH-1 y AH-2) obtuvieron respuestas parecidas a los tratamientos de IAA-1 y IAA-3, mientras que el AH-3, el AF-1 y el IAA-2, obtuvieron menor respuesta en cuanto al peso seco del follaje en etapa de plántula.

Cuadro 7. Análisis de varianza peso seco de follaje para plántula de tomate variedad Caiman-Enza zaden

<table>
<thead>
<tr>
<th>Fuente</th>
<th>DF</th>
<th>SC</th>
<th>CM</th>
<th>F</th>
<th>Pr>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo</td>
<td>8</td>
<td>0.05092458</td>
<td>0.00636557</td>
<td>4.02</td>
<td>0.0017**</td>
</tr>
<tr>
<td>Error</td>
<td>36</td>
<td>0.05701800</td>
<td>0.00158383</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total correcto</td>
<td>44</td>
<td>0.10794258</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figura 8. Comportamiento del peso seco de follaje en plántula para el cultivo de tomate variedad Caiman-Enza zaden
6.5 Calcio Magnesio y Potasio en Plántula

Para estas variables se puede apreciar que el ácido fúlvico a dosis altas (AF-3) obtuvo un mayor porcentaje de estos elementos, comparados con el ácido indolacético. El tratamiento de AF-2 también muestra aumento en los elementos Ca (siete por ciento) y Mg (10 por ciento) respecto al IAA-1. Los tratamientos IAA-1 y IAA-3, al igual que el AH-2, muestran un comportamiento similar para calcio y magnesio.

Se muestra un menor porcentaje de los elementos calcio, magnesio y potasio para el tratamiento de IAA-2, en comparación del resto de los tratamientos.

Figura 9. Porcentaje de calcio, magnesio y potasio en plántulas de tomate de la variedad Caiman-Enza zaden
6.6 Hierro y Zinc en Plántula

Las variables se comportaron de igual manera con los tratamientos de AF-3 y AH-2, obteniendo una mayor concentración del elemento hierro, que el resto de los tratamientos.

Los tratamientos de ácido indolacético a cualquier concentración, AF-1 y AF-2, AH-1 y AH-3, se pueden visualizar en la misma concentración para ambos elementos, con excepción del IAA-2 el cual no presento zinc para esta etapa.

Figura 10. Concentración de hierro y zinc en plántulas de la variedad Caiman-Enza zaden
6.7 Peso Fresco, Peso Seco y Volumen de Raíz en Amarre de Fruto

Las variables se pueden observar en la Figura 11. Con la aplicación del IAA-2 se adquiere un valor más elevado en volumen y peso seco, obteniendo un menor peso fresco que el AH-2 y IAA-2. La variable peso fresco tiene una mayor respuesta con el tratamiento de AH-2 en un tres por ciento en comparación con el IAA-3. El AF-3 y el IAA-1 se comportan de igual manera para el volumen y peso seco, presentando un aumento del 11 por ciento en el peso fresco para el AF-3 respecto al IAA-1.

El AF-1 es el tratamiento que menor respuesta presento en la variable volumen, peso fresco y peso seco para esta etapa en raíz.

Figura 11. Correlación de medias para las variables de peso fresco, peso seco y volumen de la raíz para la etapa de cosecha
6.8 Cobre, Zinc, Hierro y Potasio en Raíz para Amarre de Fruto

La variable del cobre en la etapa de amarre de fruto, (Figura 12) se comportó de manera constante para todos los tratamientos, excepto para el IAA-2 y IAA-3, además del AF-1, quienes no presentaron cobre para esta etapa.

El zinc se encontró en mayor concentración para el tratamiento AF-1 con un 10 por ciento arriba del IAA-2 y el tratamiento con menor concentración de zinc es el IAA-3 con un 47 por ciento debajo del AF-1.

El hierro se encontró en mayor cantidad en plantas con el tratamiento de IAA-2, ubicándose el AH-2 con la menor concentración en un 51 por ciento debajo. El potasio tuvo mayor presencia en plantas con el tratamiento de ácido fúlvico a baja dosis (AF-1) y el IAA-3 con una concentración de 1500 ppm, ubicando en último grado al AH-1 con tan solo 800 mg Kg⁻¹.

Figura 12. Concentración (mg Kg⁻¹) de cobre, zinc, hierro y potasio en raíz, para la etapa de amarre de fruto
6.9 Calcio y Magnesio en Raíz para Amarre de Fruto

La variable de calcio en raíz durante la etapa de amarre de fruto mostró un aumento en los tratamientos de AF-2 y AF-3 mientras que el IAA-3 fue el tratamiento con menor cantidad de calcio en raíz en un 30 por ciento respecto al AF-2 y AF-3. Los tratamientos de ácido fúlvico presentan valores similares para los contenidos de calcio en raíz, con una diferencia menor del seis por ciento.

Para la variable de magnesio el IAA-2 y el AH-3 fueron los tratamientos con mayor presencia de este elemento con 23 por ciento arriba del AF-3 (tratamiento con la menor cantidad para esta etapa). El ácido húmico aumenta los valores de magnesio en la raíz conforme aumenta la dosis empleada, no para el tratamiento de ácido fúlvico, el cual disminuye sus valores para esta variable conforme aumenta la dosis. El ácido indolacético obtiene su máximo valor para magnesio en dosis medias (IAA-2), presentando disminución en los tratamientos IAA-1 y IAA-3.

Figura 13. Calcio y Magnesio en raíz de tomate durante la etapa de amarre de fruto.
6.10 Diámetro Polar, Ecuatorial y Peso Fresco del Fruto

Las variables se muestran en la Figura 14, teniendo una tendencia similar, el tratamiento que presento mayor efecto en el peso fresco de frutos es el AH-2, de igual manera para el diámetro ecuatorial (DE); en cuanto al diámetro polar, se obtuvo valor igual al AF-1. El DE presento respuesta similar con los tratamientos de AF-1, AF-2 y AF-3, no sucedió lo mismo para el diámetro polar ya que el AF-1 también obtuvo el mayor diámetro polar. Mientras que el menor peso fresco, menor diámetro polar y ecuatorial se encontró con plantas del tratamiento de ácido indolacético a altas concentraciones (IAA-3).

Figura 14. Correlación del diámetro polar, ecuatorial y peso fresco del fruto de tomate de la variedad Caiman-Enza zaden
6.11 Firmeza y Grados Brix en Fruto

Se muestran en la figura 15, que el tratamiento AF-3, presenta mayor °brix en sus frutos y se ubica en cuarto lugar del parámetro firmeza, después del AF-1, AH-2 y AH-3. La firmeza del fruto al que se le aplico el tratamiento AF-1 presento un aumento considerablemente sobre el resto de los tratamientos aunque también disminuyó notablemente los grados brix, igualándose con los frutos del tratamiento IAA-3, para la variable firmeza.

![Figura 15. Firmeza y grados brix en el fruto de tomates de la variedad Caiman-Enza zaden](image-url)
6.12 Discusión

Aquí se puede decir que las substancias húmicas (SH) actúan como estimulantes en el aumento de producción de masa radicular y aérea así como en la absorción de los elementos (Ca, Mg, K, Fe y Zn) a dosis considerables (AF-2, AF-3, AH-2 y AH-3), en comparación con el ácido indolacético que requiere de dosis bajas para obtener similar comportamiento a las SH. Machado et al, (2009), demostró en el cultivo de frijol que la adición de SH afecta el crecimiento y cinética de absorción de nutrientes para la producción en masa.

Las dosis 0.0432 mg L⁻¹ y 0.0648 mg L⁻¹ de acido fulvico realizaron mayor efecto para la mayoría de las variables evaluadas a etapa de plántula, presentando un aumento constante conforme aumenta la dosis, lo que indica que la dosis para el tratamiento a base de acido fulvico puede incrementar y en su efecto aumentar la respuesta de masa y absorción de elementos.

Ubbini (1995), señala que las SH juegan un papel importante tanto en la fisiología vegetal como en la nutrición mineral, ya que estas exaltan la capacidad de absorción y translocación de nutrientes por las plantas, de manera que cada proceso de biosíntesis se ve optimizado con beneficios productivos y cualitativos.

Los tratamientos AH-1 y AH-3, se comportan de manera similar en plántula, para los contenidos de masa y absorción de elementos, presentando una disminución en comparación con el AH-2, lo que se traduce como la dosis óptima de ácido húmico a estas condiciones para el cultivo de tomate. Existen de que las SH pueden formar complejos solubles con los micronutrientes, los cuales pueden ser movidos hacia las raíces, induciendo un incremento en la proliferación de pelos radicales (Varanini y Pinton, 2006).

El ácido indolacético actuo como precursor del crecimiento de la raíz, para la etapa de amarre de fruto, el cual aumentó volumen y peso seco así como la absorción de los elementos, excepto para el calcio y potasio. Méndez, et al (2016) le atribuye el efecto promotor de división y elongación celular; así
como su influencia en la reactividad de la raíz al ácido indolacético, el cual actúa como fitoestimulante hormonal, estudiado en la aplicación foliar de nanopartículas metálicas de óxido de zinc (NPs).

La mayor absorción del magnesio con el uso del ácido indolacético se encuentra a 2 ml, mientras que en ácido húmico conforme aumenta la dosis aplicada aumenta la concentración del elemento en la raíz y en el ácido fúlvico a mayor dosis disminuyen los contenidos de magnesio.

En el fruto los efectos fueron parecidos para las variables PF, DP y DE con la aplicación de los tratamientos de sustancias húmicas, los cuales obtuvieron mejor respuesta en comparación con el testigo absoluto (IAA). Rauthan y Schnitzer (1981), le atribuye las funciones del ácido fúlvico a que contiene estructuras que actúan como las hormonas, facilitando la translocación de nutrientes a través de la planta, y mediante quelatación con iones metálicos aumenta su solubilidad y disponibilidad para las raíces de la planta.

La firmeza y los grados brix aumentan conforme aumenta la dosis para el ácido fúlvico, para el ácido indolacético a mayor firmeza menos grados brix conforme aumenta la dosis, ubicando su óptimo el ácido húmico a AH-2 para firmeza y grados brix.

Mediante un reporte cualitativo de fitohormonas en ácidos húmicos y fulvícos a través de una cromatografía (HPLC) con el cromatógrafo líquido SHIMADZU con bombas LC-10 AD VP, autoinyector SIL-10 AD VP, un controlador del sistema SCL-10 A VP y un detector de fluorescencia RF-10AXL. Se empleó una columna KROMASIL 100 C18 5 mm (25 x 0,4), con un lazo de inyección de 20 ml. Se utilizó el software CLASS-VP (5.03) para la adquisición y procesamiento de los datos. Los cuales arrojaron que las SH (ácido húmico y ácido fúlvico) poseen similitud estructural y funcional con respecto al ácido indolacético.
VII. CONCLUSIÓN

La dosis alta del ácido fúlvico, realizó el efecto superior en las variables medidas en la plántula; mientras que, en la etapa de “amarre de fruto”, lo realizaron las dosis medias del ácido indolacético y del ácido húmico.

